ترغب بنشر مسار تعليمي؟ اضغط هنا

UPPSALA NLP في Semeval-2021 المهمة 2: نماذج لغة متعددة اللغات للضبط الدقيق واستخراج ميزة في الغموض في السياق

Uppsala NLP at SemEval-2021 Task 2: Multilingual Language Models for Fine-tuning and Feature Extraction in Word-in-Context Disambiguation

416   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نحن تصف تقديم UPPSALA NLP إلى مهمة SEMEVAL-2021 2 على الغمزة متعددة اللغات والتبلغة في السياق.نستكشف عن فائدة ثلاثة نماذج لغوية متعددة اللغات المدربة مسبقا، XLM-Roberta (XLMR)، بيرت متعددة اللغات (MBERT) بيرت مقطورة متعددة اللغات (Mdistilbert).قارنا هذه النماذج الثلاثة في اثنين من الإعدادات، والضبط بشكل جيد وكمسافات ميزة.في الحالة الثانية، نقوم أيضا بتجربة استخدام المعلومات المستندة إلى التبعية.نجد أن الضبط الدقيق أفضل من استخراج الميزات.يعمل XLMR بشكل أفضل من mbert في الإعداد المتبادل على حد سواء مع ضبط الدقيقة والميزة، في حين أن هاتين النموذجين تعطي أداء مماثل في الإعداد متعدد اللغات.يعمل Mdistilbert بشكل سيئ مع ضبط جيد ولكن يعطي نتائج مماثلة للنماذج الأخرى عند استخدامها كمستغل ميزة.قدمنا أفضل أنظمةنا، يتم ضبطها بشكل جيد مع XLMR و Mbert.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

في هذه الورقة، نقدم المهمة السامية الأولى على الغموض المتعددة اللغات والبلاية في السياق (MCL-WIC). تتيح هذه المهمة القدرة الكامنة التي تم التحقيق بها إلى حد كبير من القدرة المتأصلة إلى حد كبير في التمييز بين حواس الكلمات داخل وبصور اللغات المراد تقيي مها، مما أدى إلى تقييم متطلبات جرد ذات معنى ثابت. مؤطرة كتصنيف ثنائي، مهمتنا مقسمة إلى جزأين. في المهمة الفرعية متعددة اللغات، يتعين على النظم المشاركة تحديد ما إذا كانت كلمتين مستهدفتين، كل منهما يحدث في سياق مختلف داخل نفس اللغة، معبرا عن نفس المعنى أم لا. بدلا من ذلك، في الجزء اللغوي، يطلب من النظم إجراء المهمة في سيناريو عبر اللغات، حيث يتم توفير الكلمات المستهدفة والسياقتين المقابلين بلغتين مختلفتين. نوضح مهمتنا، وكذلك بناء مجموعة بياناتنا التي أنشأنا يدويا بما في ذلك خمس لغات، وهي العربية والصينية والإنجليزية والفرنسية والروسية، ونتائج النظم المشاركة. مجموعات البيانات والنتائج متوفرة في: https://github.com/sapienzanlp/mcl-wic.
تقدم هذه الورقة نظام الغموض في السياق.تركز المهمة على التقاط الطبيعة Polysemous للكلمات في بيئة متعددة اللغات واللغة اللغوية، دون النظر في جرد صارم من معاني الكلمات.يطبق النظام خوارزميات معالجة اللغة الطبيعية على مجموعات البيانات من مهمة Semeval 2021 2، والقدرة على تحديد معنى الكلمات للغات العربية والصينية والإنجليزية والفرنسية والروسية، دون الاستفادة من أي موارد أحادية أو متعددة اللغات إضافية.
في هذا العمل، نقدم نهجنا لحل المهمة Semeval 2021 2: الغموض المتعددة اللغات والتبلغة في السياق (MCL-WIC). المهمة هي مشكلة تصنيف زوج الجملة حيث يكون الهدف هو اكتشاف ما إذا كانت كلمة معينة مشتركة بين كل من الجمل تثير نفس المعنى. نقدم أنظمة لكلا الإعدادا ت - متعددة اللغات (جمل الزوج تنتمي إلى نفس اللغة) واللغة اللغوية (جمل الزوج تنتمي إلى لغات مختلفة). يتم توفير بيانات التدريب باللغة الإنجليزية فقط. وبالتالي، فإننا نوظف تقنيات النقل عبر اللغات. توظف نهجنا نماذج اللغة القائمة على المحولات التي تم تدريبها مسبقا، مثل Electra و Albert، للمهمة الإنجليزية و XLM-R لجميع المهام الأخرى. لتحسين أداء هذه الأنظمة، نقترح إضافة إشارة إلى الكلمة التي سيتم إزالتها وتزيد بياناتنا عن طريق انعكاس زوج الجملة. ونحن كذلك زيادة DataSet المقدمة إلينا مع WIC و XL-WIC و SEMCOR 3.0. باستخدام الكفر، نحقق أداء قويا في المهمة المتعددة اللغات، حيث وضعت أولا في المهام الفرعية EN-EN و FR-FR. بالنسبة للإعداد المتبادل، فإننا أعملنا بترجمة طرق اختبار وطريقة طلقة صفرية، باستخدام نماذجنا متعددة اللغات، مع الأداء الأخير بشكل أفضل قليلا.
نقوم بتجربة XLM Roberta for Word في سياق الغموض في الإعداد اللغوي متعدد اللغات والصليب لتطوير نموذج واحد لديه معرفة حول كلا الإعدادات.نحل المشكلة كمشكلة تصنيف ثنائية وكذلك تجربة تكبير البيانات وتقنيات التدريب الخصم.بالإضافة إلى ذلك، نقوم أيضا بتجربة تقنية تدريب مرتبة 2.تثبت أسالبتنا أنها مفيدة لأداء أفضل وأغاني.
تحديد ما إذا كانت الكلمة تحمل نفس المعنى أو المعنى المختلف في سياقتين هي منطقة بحثية مهمة في معالجة اللغة الطبيعية تلعب دورا مهما في العديد من التطبيقات مثل الإجابة على الأسئلة، وملخص الوثائق، واسترجاع المعلومات واستخراج المعلومات واستخراج المعلومات. يعتمد معظم العمل السابق في هذا المجال على الموارد الخاصة باللغة مما يجعل من الصعب التعميم عبر اللغات.النظر في هذا القيد، فإن نهجنا في مهمة Semeval-2021 يعتمد فقط على نماذج محول مسبقا ولا يستخدم أي معالجة وموارد خاصة باللغة.على الرغم من ذلك، يحقق أفضل نموذج لدينا 0.90 دقة للترقيط الفرعي الإنجليزي الإنجليزي وهو متوافق للغاية مقارنة بأفضل نتيجة الترجمة الفرعية؛0.93 دقة.نهجنا يحقق أيضا نتائج مرضية في أزواج لغة أحادية الألوان وغير اللغوية الأخرى أيضا.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا