ترغب بنشر مسار تعليمي؟ اضغط هنا

كيف سأقول؟مجموعة بيانات لتقييم أنظمة التوصية للجدول

How Will I Argue? A Dataset for Evaluating Recommender Systems for Argumentations

214   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تعتبر عمليات تبادل الوسائط جزءا مهما في الاتصال، لكننا غالبا ما غمرت كثيرا مع الكثير من الحجج لمراكز مختلفة أو يتم التقاطها في فقاعات المرشح.الأدوات التي يمكن أن تقدم حجج قوية ذات صلة بالنفس يمكن أن تساعد في تقليل هذه المشاكل.لتكون قادرا على تقييم الخوارزميات التي يمكن أن تتنبأ بمدى مقنع الحجة، قمنا بجمع مجموعة بيانات بها أكثر من 900 حجج ومواقف شخصية تضم 600 فرد، والتي نقدمها في هذه الورقة.بناء على هذه البيانات، نقترح ثلاثة مهام توصية، التي نقدم النتائج التي نقدمها خطين أساسيين من مصنف أغلبية بسيطة وخوارزمية جارتين أكثر تعقيدا.تشير نتائجنا إلى أنه لا يزال من الممكن تطوير خوارزميات أفضل، وندعنا المجتمع لتحسين نتائجنا.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تصفيات مضادة تصف الأحداث التي لم تتم أو لا يمكنها إجراءها. نحن نعتبر مشكلة الكشف المتعرضين (CFD) في مراجعات المنتج. لهذا الغرض، فإننا نحيطر على مجموعة بيانات متعددة اللغات CFD من مراجعات منتجات الأمازون التي تغطي البيانات الإضافية المكتوب باللغات الإ نجليزية والألمانية واليابانية. DataSet فريدة من نوعها لأنها تحتوي على مضادة بلغات متعددة، ويغطي مساحة تطبيق جديدة من مراجعات التجارة الإلكترونية، وتوفر شروح محترفة عالية الجودة. نقوم بتدريب نماذج CFD باستخدام طرق وأساليب تمثيل نصية مختلفة. نجد أن هذه النماذج قوية ضد التحيزات الاجتماعية التي تم تقديمها بسبب اختيار الجملة التي تعتمد على العبارات. علاوة على ذلك، فإن مجموعة بيانات CFD الخاصة بنا متوافقة مع مجموعات البيانات السابقة ويمكن دمجها لتعلم نماذج CFD دقيقة. تطبيق الترجمة الآلية على الأمثلة الإنجليزية المضادة لإنشاء بيانات متعددة اللغات يؤدي بشكل سيء، مما يدل على خصوصية لغة هذه المشكلة، والتي تم تجاهلها حتى الآن.
تحديد مصطلحات المصطلحات هي الخطوة الأولى في التواصل العلمي. يمكن تطوير نماذج توليد النص العصبي لتوليد التعريف التحايل على منحك كثافة العمل، مما يؤدي إلى مزيد من تسريع الاكتشاف العلمي. لسوء الحظ، فإن الافتقار إلى مجموعة بيانات تعريف المصطلحات واسعة ال نطاق تعوق العملية نحو توليد التعريف. في هذه الورقة، نقدم مجموعة بيانات تعريف مصطلحات واسعة النطاق تغطي أزواج تعريف تعريف المصطلحات 2،010،648، وتمتد 227 من الفضائح الطبية الحيوية. تشكل المصطلحات المصطلحات في كل فرع من الفعالة رسم بياني Acyclic موجه مؤقتا، حيث فتح طرق جديدة لتطوير نماذج توليد الرسومات في الرسم البياني. بعد ذلك اقترحنا نموذج جيل تعريف الرسم البياني للرسوم البياني الرواية التي تدمج المحولات مع شبكة عصبية الرسم البياني. ينفأ النموذج لدينا على نماذج توليد النص الموجودة من خلال استغلال بنية الرسم البياني للمصطلحات. أظهرنا أيضا كيف يمكن استخدام الرسوم البيانية لتقييم نماذج اللغة المحددة مسبقا، ومقارنة أساليب تعلم التمثيل الرسم البياني والتنبؤ بالحكومة. نحن نتصور الرسوم البيانية لتكون مصدرا فريدا لتوليد التعريف والعديد من مهام NLP الأخرى في الطب الحيوي.
في ترجمة النص حيث تعتبر المشاعر الرسالة الرئيسية، يعطي المترجمون البشريون اهتماما خاصا للكلمات تحمل المعنويات. السبب هو أن ترجمة غير صحيحة لهذه الكلمات سوف تفوت الجانب الأساسي للنص المصدر، أي شعور المؤلف. في العالم عبر الإنترنت، تستخدم أنظمة MT على ن طاق واسع لترجمة المحتوى الذي تم إنشاؤه بواسطة المستخدم (UGC) مثل المراجعات، وتغريدات، ووظائف وسائل التواصل الاجتماعي، حيث تكون الرسالة الرئيسية في كثير من الأحيان موقف المؤلف الإيجابي أو السلبي تجاه موضوع النص. من المهم في مثل هذه السيناريوهات لقياس بدقة إلى حد ما يمكن أن يكون نظام MT أداة مساعدة واقعية موثوقة في نقل الرسالة الصحيحة. تتناول هذه الورقة مشكلة أقل معترف بها في مجال تقييم الترجمة الآلية التي تهم إلى أي مدى يتفق المقاييس التلقائية مع مستوى الذهب من التقييم البشري للحصول على ترجمة صحيحة للمشاعر. نقوم بتقييم فعالية مقاييس الجودة التقليدية في اكتشاف عدم فهم الثقة، خاصة عندما يكون الخطأ الوحيد في إخراج MT. نقترح قياس المعنويات العددية "تقييس" المناسب لتقييم دقة الرسالة المترجمة تؤثر في نص UGC بواسطة نظام MT. سنظهر أن دمج هذا التدبير على دراية المعنويات يمكن أن يعزز بشكل كبير ارتباط بعض مقاييس الجودة المتاحة مع الحكم الإنساني لترجمة دقيقة للمشاعر.
نقوم بتقديم Gerdalir، مجموعة بيانات ألمانية لاسترجاع المعلومات القانونية بناء على وثائق الحالة من منصة المعلومات القانونية المفتوحة المفتوحة.تتكون DataSet من استفسارات 123 ألفا، يتم تصنيف كل منها وثيقة واحدة ذات صلة على الأقل في مجموعة من وثائق الحال ة 131K.نقوم بإجراء العديد من التجارب الأساسية بما في ذلك BM25 وإعادة الرحالة العصبية لحديمع DataSet لدينا، نهدف إلى توفير معيار موحد لرجال الألمانية وترويج البحث المفتوح في هذا المجال.أبعد من ذلك، تضم مجموعة بياناتنا بيانات تدريبية كافية لاستخدامها كملقمة من النماذج في اللغة الألمانية أو اللغوية متعددة اللغات.
تصف هذه الورقة عملية التوضيحية لبيانات لغة مسيئة محددة لرومانية على وسائل التواصل الاجتماعي.لتسهيل البحوث القابلة للمقارنة متعددة اللغات حول اللغة الهجومية، تتبع المبادئ التوجيهية التوضيحي بعض جهود التوضيح الحديثة لغات أخرى.يحتوي Corpus النهائي على 5 000 وظيفة مدونات دقيقة مشروح من عدد كبير من المحن المعلقين المتطوعين.إن اتفاقية المعلن والتمييز التلقائي الأولي الناتج نواجهها تتماشى مع جهود التوضيحية السابقة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا