ترغب بنشر مسار تعليمي؟ اضغط هنا

التصنيف المتكامل للأخطاء في أنظمة الحوار الموجهة للدردشة

Integrated taxonomy of errors in chat-oriented dialogue systems

498   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تقترح هذه الورقة تصنيفا من الأخطاء في أنظمة الحوار الموجهة للدردشة.سابقا، تم اقتراح اختصاصين؛واحد هو النظرية مدفوعة والبيانات الأخرى مدفوعة.السابق يعاني من حقيقة أن نظريات الحوار للمحادثة البشرية غالبا ما تكون مناسبة لتصنيف الأخطاء التي قدمها أنظمة الحوار الموجهة نحو الدردشة.هذا الأخير لديه قيود في أنه لا يمكن إلا أن يتعامل مع أخطاء النظم التي لدينا بيانات.تدمج هذه الورقة هذين تصنيفين لخلق تصنيف شامل للأخطاء في أنظمة الحوار الموجهة نحو الدردشة.وجدنا أنه، مع تصنيفنا المتكامل لدينا، يمكن تفاح أخطاء بشكل موثوق بموثوقية مع KAPPA أعلى من Fleiss 'Kappa مقارنة بالتصنيف المقترح سابقا.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تعلم أنظمة الحوار الموجهة نحو المهمة الحديثة نموذجا من الحوارات المشروح، وتحول هذه الحوارات بدورها يتم جمعها وتفاحها بحيث تكون متسقة مع معرفة مجال معينة. ومع ذلك، في السيناريوهات الحقيقية، تخضع معارف المجال للتغييرات المتكررة، وقد تصبح حوارات التدريب الأولي قد تصبح عفا عليها الزمن، مما يؤدي إلى انخفاض كبير في الأداء النموذجي. في هذه الورقة، نحقق في العلاقة بين الحوارات التدريبية ومعرفة المجال، واقتراح تكيف مجال الحوار، وهي منهجية تهدف إلى تكييف حوارات التدريب الأولي للتغييرات تدخلت في معرفة المجال. نحن نركز على تغييرات قيمة الفتحة (على سبيل المثال، عندما تتوفر قيم فتحة جديدة لوصف كيانات المجال) وتحديد إعداد تجريبي لتتكيف مع نطاق الحوار. أولا، نوضح أن النماذج الحالية للحالة لتتبع حالة الحوار لا تزال قوية تقريبا للتغيرات ذات قيمة الفتحة لمعرفة المجال. بعد ذلك، نقارن استراتيجيات مختلفة التكيف عن نطاق التكيف، مما يدل على أن التقنيات البسيطة فعالة لتقليل الفجوة بين حوارات التدريب ومعرفة المجال.
يسمح التعلم المستمر في أنظمة الحوار الموجهة نحو المهام للنظام بإضافة مجالات ووظائف جديدة للعمل الإضافي بعد النشر، دون تكبد التكلفة العالية لإعادة النظر في النظام بأكمله في كل مرة. في هذه الورقة، نقترح أول معيار تعلم مستمر على الإطلاق لأنظمة الحوار ال موجهة نحو المهام مع أن يتم تعلم 37 نطما بشكل مستمر في إعدادات التعلم المعدلة والنهاية. بالإضافة إلى ذلك، نقوم بتنفيذ ومقارنة خطوط أساسيات التعلم المستمرة المتعددة، ونقترحنا طريقة معمارية بسيطة ولكنها فعالة تعتمد على المحولات المتبقية. نشير أيضا إلى أن الأداء العلوي للتعلم المستمر يجب أن يكون يعادل التعلم المتعدد المهام عند توفر البيانات من جميع المجال في وقت واحد. توضح تجاربنا أن الطريقة المعمارية المقترحة وإجراءات استراتيجية تستند إلى إعادة التشغيل بسيطة تؤدي بشكل أفضل، من خلال هامش كبير، مقارنة بتقنيات التعلم المستمرة الأخرى، وأسوأ قليلا قليلا من العلوي المتعدد التعلم العلوي أثناء كونه 20x بشكل أسرع في تعلم النطاقات الجديدة. نحن نبلغ أيضا العديد من المفاضلات من حيث استخدام المعلمة وحجم الذاكرة ووقت التدريب، وهي مهمة في تصميم نظام حوار موجه نحو المهام. يتم إصدار المعيار المقترح لتعزيز المزيد من البحث في هذا الاتجاه.
يتطلب تحسين سياسة الحوار عبر التعلم التعزيز عددا كبيرا من التفاعلات التدريبية، مما يجعل التعلم مع المستخدمين الحقيقيين الوقت المستهلكة ومكلفة. لذلك يعتمد العديد من الإعدادات على محاكاة المستخدم بدلا من البشر. لدى محاكاة المستخدم هذه مشاكلهم الخاصة. ف ي حين أن محاكاة المستخدمين المشفرة باليد، فقد ثبت أن محاكاة المستخدمين الذين يعتمدون على القواعد كافية في المجالات الصغيرة والبسيطة، لأن عدد القواعد المعقدة بسرعة أصلي. لا تزال محاكاة المستخدم التي يحركها بيانات البيانات، من ناحية أخرى، تعتمد على المجال. هذا يعني أن التكيف مع كل مجال جديد يتطلب إعادة تصميم وإعادة التدريب. في هذا العمل، نقترح محاكاة للمستخدم المستقل المستقل للمجال (TUS). لا يتم ربط هيكل TUS مجال معين، وتمكين تعميم المجال وتعلم سلوك المستخدم عبر المجال من البيانات. نحن نقارن TUS مع أحدث التقيمات التلقائية وكذلك الإنسان. يمكن أن يتنافس TUS مع محاكاة المستخدمين المستند إلى القواعد على المجالات المحددة مسبقا ويمكن أن يعممون إلى المجالات غير المرئية في أزياء صفرية.
في أنظمة الحوار الموجهة نحو الأهداف، يقدم المستخدمون المعلومات من خلال قيم الفتحة لتحقيق أهداف محددة. عمليا، يمكن أن تكون بعض مجموعات قيم الفتحة غير صالحة وفقا للمعرفة الخارجية. على سبيل المثال، مزيج من بيتزا الجبن "(عنصر القائمة) وملفات تعريف الارتب اط OREO" (تتصدر) من كلام الإدخال يمكن أن أطلب بيتزا جبنة مع ملفات تعريف الارتباط Oreo على القمة؟ "تعويضات مثل هذه المجموعات غير الصالحة وفقا للقائمة من مطعم العمل. تسمح أنظمة الحوار التقليدية بإعدام قواعد التحقق من الصحة كخطوة بعد المعالجة بعد أن تم ملء الفتحات التي يمكن أن تؤدي إلى تراكم الخطأ. في هذه الورقة، نقوم بإضفاء الطابع الرسمي على قيود فتحة مدفوعة بالمعرفة وتقديم مهمة جديدة من اكتشاف انتهاك القيد مصحوبة ببيانات معايير. ثم نقترح طرق لإدماج المعرفة الخارجية في الكشف عن انتهاك الانتهاك في النظام والنموذج كمركز تصنيف نهاية إلى نهج ومقارنته لنهج خط أنابيب القواعد التقليدي. تجرب التجارب على مجاليين من مجموعة بيانات متعددة الأوجه من تحديات الكشف عن انتهاك القيود وتضع المرحلة للعمل في المستقبل والتحسينات.
تهدف هذه الورقة إلى تقديم نظرة عامة شاملة للتطورات الأخيرة في تتبع حكمة الحوار (DST) لأنظمة المحادثات الموجهة نحو المهام.نقدم المهمة، وخاصة البيانات الرئيسية التي تم استغلالها وكذلك مقاييس تقييمها، ونحن نحلل العديد من النهج المقترحة.نحن نميز بين نماذ ج DST غير الثابتة، والتي تتنبأ بمجموعة ثابتة من دول الحوار، ونماذج الأطباق الديناميكية، والتي يمكن أن تتنبؤ حوار الحوار حتى عندما تتغير عملية الأونولوجيا.ونناقش أيضا قدرة النموذج على تتبع النطاقات الفردية أو المتعددة والقياس إلى مجالات جديدة، سواء من حيث نقل المعرفة والتعلم الصفر.نحن نغطي فترة من عام 2013 إلى 2020، مما يدل على زيادة كبيرة في أساليب مجال متعددة، ومعظمها باستخدام نماذج اللغة المدربة مسبقا.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا