في هذا العمل، نحلل متانة أنظمة الترجمة الآلية العصبية نحو الاضطرابات النحوية في المصدر.على وجه الخصوص، نركز على اضطرابات الانعطاف المورفولوجي.بينما تمت دراسة هذا مؤخرا للغة الإنجليزية → French (Morpheus) (Tan et al.، 2020)، فمن غير الواضح كيف تمتد هذا إلى أي أنظمة ترجمة إنجليزية →.نقترح Morpheus - متعدد اللغات التي تستخدم قواميس Unimorph لتحديد اضطرابات مورفولوجية للمصدر الذي يؤثر سلبا على نماذج الترجمة.جنبا إلى جنب مع تحليل أنظمة MT المسبقة للحكانات، نقوم بتدريب وتحليل الأنظمة لمدة 11 أزواج لغة باستخدام كوربوس TED متعددة اللغات (Qi et al.، 2018).نحن نقارن أيضا هذا مع الأخطاء الفعلية من مكبرات البيانات غير الأصلية باستخدام مجموعات بيانات تصحيح الأخطاء النحوية.أخيرا، نقدم تحليلا نوعيا وكميا لأغاني أي أنظمة ترجمة إنجليزية →.
In this work, we analyze the robustness of neural machine translation systems towards grammatical perturbations in the source. In particular, we focus on morphological inflection related perturbations. While this has been recently studied for English→French (MORPHEUS) (Tan et al., 2020), it is unclear how this extends to Any→English translation systems. We propose MORPHEUS-MULTILINGUAL that utilizes UniMorph dictionaries to identify morphological perturbations to source that adversely affect the translation models. Along with an analysis of state-of-the-art pretrained MT systems, we train and analyze systems for 11 language pairs using the multilingual TED corpus (Qi et al., 2018). We also compare this to actual errors of non-native speakers using Grammatical Error Correction datasets. Finally, we present a qualitative and quantitative analysis of the robustness of Any→English translation systems.
المراجع المستخدمة
https://aclanthology.org/
نماذج الترجمة الآلية العصبية (NMT) هي مدفوعة بالبيانات وتتطلب كوربوس تدريب واسع النطاق. في التطبيقات العملية، عادة ما يتم تدريب نماذج NMT على مجال مجال عام ثم يتم ضبطه بشكل جيد من خلال التدريب المستمر على Corpus في المجال. ومع ذلك، فإن هذا يحمل خطر ا
أسئلة البحث الحديثة أهمية الاهتمام الذاتي لمنتج المنتج في نماذج المحولات ويظهر أن معظم رؤساء الاهتمام تعلم أنماطا موضعية بسيطة. في هذه الورقة، ندفع أبعد من ذلك في خط البحث هذا واقتراح آلية بديلة جديدة عن النفس: الاهتمام المتكرر (ران). تتعلم RAN بشكل
تعتمد معظم نماذج الترجمة الآلية العصبية الحالية ترتيب فك التشفير الرخيصي إما من اليسار إلى اليمين أو اليمين إلى اليسار.في هذا العمل، نقترح طريقة رواية تنفصل قيود أوامر فك التشفير هذه، تسمى فك تشفير الذكية.وبشكل أكثر تحديدا، تتوقع طريقةنا أولا كلمة مت
نقترح طريقة تكبير البيانات للترجمة الآلية العصبية.إنه يعمل عن طريق تفسير نماذج اللغة ومحاذاة الجمل الفعلية سببا.على وجه التحديد، فإنه يخلق كورس ترجمة موازية مزعجة عن طريق توليد عبارات محاذاة مضادة للمحاطة (المسار).نحن نولد هذه من خلال أخذ عينات من عب
تعزز البيانات، التي تشير إلى معالجة المدخلات (على سبيل المثال، إضافة ضوضاء عشوائية، اخفاء أجزاء محددة) لتكبير مجموعة البيانات، تم اعتمادها على نطاق واسع في تعلم الجهاز.تعمل معظم تقنيات تكبير البيانات على إدخال واحد، مما يحد من تنوع كوربوس التدريب.في