ترغب بنشر مسار تعليمي؟ اضغط هنا

Infillmore: توليد اللغة الموجهة الإطار مع سياق ثنائي الاتجاه

InFillmore: Frame-Guided Language Generation with Bidirectional Context

282   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نقترح امتداد منظم لتوليد اللغة الشرطية ذات السياق ثنائي الاتجاه، أو تستقيم "مستوحاة من نظرية الدلالية الإطار.يتم توفير التوجيه من خلال إحدى مناهضين: (1) ضبط النموذج الدقيق، والتكييف مباشرة على الإطارات الرمزية الملاحظة، و (2) امتداد جديد لإزالة فك تشفير العمليات المعجمية المعجمية بشكل متعرز.تؤكد التقييمات التلقائية والبشرية أن الجيل الموجهة للأطر الموجهة يسمح بالتلاعب الصريح في دلالات Infill Inhantics المقصودة، مع الحد الأدنى من الخسارة في الاستئمان من النص الذي تم إنشاؤه الإنسان.تنطبق طرقنا بمرونة على مجموعة متنوعة من سيناريوهات الاستخدام، ونحن نقدم عرض ويب تفاعلي.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يهدف استخراج العاطفة (ECE) إلى استخراج الأسباب وراء المشاعر المعينة في النص. تم نشر بعض الأعمال المتعلقة بمهمة اللجنة الاقتصادية لأوروبا وجذب الكثير من الاهتمام في السنوات الأخيرة. ومع ذلك، فإن هذه الطرق تهمل قضايا رئيسيتين: 1) دفع عدد قليل من الانتب اه لتأثير معلومات السياق على مستوى المستند على اللجنة الاقتصادية لأوروبا، و 2) عدم وجود استكشاف كاف لكيفية استخدام بند العاطفة المشروح بفعالية. بالنسبة للقضية الأولى، نقترح شبكة انتباه هرمية ثنائية الاتجاه (BHA) المقابلة للمرشح المحدد يسبب البحث عن سياق مستوى المستند في المستند بطريقة منظمة وديناميكية. بالنسبة للقضية الثانية، نقوم بتصميم وحدة تصفية عاطفية (EF) لكل طبقة من شبكة انتباه الرسوم البيانية، والتي تحسب درجة البوابة بناء على جملة العاطفة لتصفية المعلومات غير ذات الصلة. الجمع بين BHA و EF، يمكن ل EF-BHA أن يكتسب ديناميكيا المعلومات السياقية من اتجاهين وفلاتر المعلومات غير ذات صلة. توضح النتائج التجريبية أن EF-BHA يحقق العروض التنافسية على مجموعة بيانات عامة بلغات مختلفة (الصينية والإنجليزية). علاوة على ذلك، نحدد تأثير السياق على استخراج السبب العاطفي وتوفير تصور التفاعلات بين المرشح يسبب البنود والسياقات.
تلقى الكشف عن اللغة الهجومية (القديم) اهتماما متزايدا بسبب تأثيرها المجتمعي.يوضح العمل الحديث أن الأساليب القائمة على المحولات ثنائية الاتجاه تحصل على أداء مثير للإعجاب في القديم.ومع ذلك، فإن هذه الأساليب تعتمد عادة على مجموعات البيانات القديمة ذات ا لمسمى على نطاق واسع لتدريب النماذج.لمعالجة مسألة ندرة البيانات / التسمية في القديم، في هذه الورقة، نقترح نهج بسيط في مجال تكيف مجال بسيط ولكنه فعال لتدريب المحولات ثنائية الاتجاه.تقدم نهجنا إجراءات التدريب على التكيف (DA) إلى ألبرت، بحيث يمكنها استغلال البيانات المساعدة الفعالة من مجالات المصدر لتحسين الأداء القديم في مجال مستهدف.تظهر النتائج التجريبية على مجموعات البيانات القياسية أن نهجنا، ألبرت (دا)، يحصل على الأداء الحديثة في معظم الحالات.على وجه الخصوص، فإن نهجنا يستفيد بشكل كبير من الدروس الممثلة بشكل كبير وغير مصنوع من الأداء، مع تحسن كبير على ألبرت.
ندرس مشكلة توليد مشاكل كلمة الرياضيات الحسابية (MWPS) بالنظر إلى معادلة الرياضيات التي تحدد الحساب الرياضي والسياق الذي يحدد سيناريو المشكلة.الأساليب الحالية عرضة لتوليد MWPS والتي هي إما غير صالحة للرياضيات أو لها جودة لغة غير مرضية.كما أنها إما تتج اهل السياق أو تتطلب مواصفات يدوية لقالب مشكلة، والتي تساوم، تنوع mwps التي تم إنشاؤها.في هذه الورقة، نحن نطور نهج جيل MWP الجديد الذي يرفع طرازات اللغة المدربة مسبقا ونموذج اختيار الكلمات الرئيسية السياق لتحسين جودة اللغة من MWPS المولدة والثاني) لقيود اتساق المعادلة لمعادلات الرياضيات لتحسين الصلاحية الرياضيةmwps التي تم إنشاؤها.تجارب كمية واسعة من الكمية والنوعية على ثلاثة مجموعات بيانات MWP العالمية الحقيقية توضح الأداء الفائق لنهجنا مقارنة مع خطوط الأساس المختلفة.
تركز توليد اللغة الطبيعية (NLG) لأنظمة الحوار الموجهة نحو المهام على توصيل محتوى معين بدقة، بطلاقة، وتطافق. في حين أن هذه السمات أمر حاسم للحوار الناجح، فمن المستحسن أيضا تحقيق أهداف أسلوبية محددة في وقت واحد، مثل طول الاستجابة، وجهة النظر، وصفي، وال شعور، والشكل، والشكل، والتعاطف. في هذا العمل، نركز على التحكم الأسلطي والتقييم ل NLG الموجهة للمخطط، مع أهداف مشتركة لتحقيق السيطرة الدلالية واللحلية. نقوم بتجربة تفصيلية مع مختلف طرق الجيل التي تسيطر عليها نماذج اللغة المحددة مسبقا: على وجه التحديد، والتدريب الشرطي، والضبط الجميل الموجه، والكشف الموجهة. نناقش مزاياها والقيود الخاصة بهم، وتقييمها بمجموعة واسعة من مقاييس التقييم التلقائي والبشري. تظهر نتائجنا أنه في حين أن الدقة عالية النمط والصحة الدلالية أسهل في تحقيق المزيد من الأساليب المعرفة من المعالم مع التدريب الشرطي، فإن التحكم الأسطوري يمكن تحقيقه أيضا على أنماط معقدة أكثر دلالة تستخدم أساليب فك التشفير الموجودة على أساس التمييز. تشير النتائج أيضا إلى أن الطرق التي تعتبر أكثر قابلية للتطوير (مع ضبط المعلمات أقل فرط) وأن توليد سياق Disent Nastange والاختلافات الأسلوبية أكثر فعالية في تحقيق صحة دلالية ودقة أسلوب.
في هذه الورقة، ندرس استخدام النماذج اللغوية المدربة مسبقا لتمكين توليد لغة البندقية القليلة (NLG) في أنظمة الحوار الموجهة نحو المهام. نقدم نظاما يتكون من التدريب الذاتي التكراري وإطار قالب صغير قابل للتوسيع يتم تخصيص بيانات الإدخال المهيكلة في نص شبه طبيعي للاستفادة الكاملة من نماذج اللغة المدربة مسبقا. نحن نقارن تمثيلات Var Ious لإدخال ونماذج NLG وإخراجها وإظهار أن تحويل المدخلات والمخرجات لتكون مشابهة لما شابه نموذج اللغة من قبل أثناء التدريب المسبق يحسن أداء الطراز القليل من الطرازات. نظظ أن Mod-Els العصبي يمكن تدريبها على أساس عدد قليل من الأمثلة المشروحة مع توفير الدقة العالية، وخفضت إلى حد كبير متطلبات الموارد الخاصة بوقوف مجال جديد أو لغة. هذا مستوى كفاءة البيانات يزيل الحاجة إلى جمع بيانات الحشد مما أدى إلى جودة أعلى جودة مشروح من قبل اللغويين الخبراء. بالإضافة إلى ذلك، ستحسن عمليات صيانة النموذج والتصحيح في هذا الإعداد القليل من الرصاص. أخيرا، نستكشف تقطير واستخدام نظام التخزين المؤقت لإرضاء متطلبات الكمون لأنظمة العالم الحقيقي.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا