في إجابة سؤال مفتوحة بسيطة (QA)، أصبح استرجاع كثيف أحد الأساليب القياسية لاستعادة المقاطع ذات الصلة إلى استنتاج إجابة.في الآونة الأخيرة، حققت الاسترجاع الكثيف أيضا نتائج أحدث النتائج في هفور تشاينا، حيث يلزم تجميع المعلومات من أجزاء متعددة من المعلومات والمناسبات عليها.على الرغم من نجاحها، فإن أساليب استرجاع كثيفة هي مكثفة حسابية، مما يتطلب تدريب GPUs المتعدد للتدريب.في هذا العمل، نقدم نهجا هجينا (معجميا وتكثيفا) تنافسية للغاية مع نماذج استرجاع كثيفة الحديث، مع مطالبة موارد حسابية أقل بكثير.بالإضافة إلى ذلك، نحن نقدم تقييم متعمق لأساليب استرجاع كثيفة على إعدادات الموارد الحاسوبية المحدودة، وهو شيء مفقود من الأدبيات الحالية.
In simple open-domain question answering (QA), dense retrieval has become one of the standard approaches for retrieving the relevant passages to infer an answer. Recently, dense retrieval also achieved state-of-the-art results in multi-hop QA, where aggregating information from multiple pieces of information and reasoning over them is required. Despite their success, dense retrieval methods are computationally intensive, requiring multiple GPUs to train. In this work, we introduce a hybrid (lexical and dense) retrieval approach that is highly competitive with the state-of-the-art dense retrieval models, while requiring substantially less computational resources. Additionally, we provide an in-depth evaluation of dense retrieval methods on limited computational resource settings, something that is missing from the current literature.
المراجع المستخدمة
https://aclanthology.org/
غالبا ما تعتمد مهام الإجابة على الأسئلة التي تتطلب معلومات من وثائق متعددة على نموذج استرجاع لتحديد المعلومات ذات الصلة للتفكير. يتم تدريب نموذج الاسترجاع عادة على تعظيم احتمالية الأدلة الداعمة المسمى. ومع ذلك، عند الاسترجاع من نصائح نصية كبيرة مثل W
حققت استرجاع النص العصبي الكثيف نتائج واعدة حول السؤال المفتوح للنطاق الرد (QA)، حيث يتم استغلال تمثيلات كامنة للأسئلة والمراجيات للحصول على أقصى قدر من البحث الداخلي في عملية الاسترجاع. ومع ذلك، فإن المستردات الكثيفة الحالية تتطلب تقسيم المستندات إل
تم استخدام شبكة الرسم العصبي الرسمية مؤخرا كأداة واعدة في مهمة الإجابة على السؤال المتعدد القفزات. ومع ذلك، فإن التحديثات غير الضرورية والإنشاءات الحافة البسيطة تمنع استخراج سبان إجابة دقيقة بطريقة أكثر مباشرة وتفسيرها. في هذه الورقة، نقترح نموذجا جد
تقدم التطورات الحديثة في QA في الهواء الطلق إلى نماذج قوية تعتمد على استرجاع كثيف، ولكن ركزت فقط على استرداد المقاطع النصية.في هذا العمل، نتعامل مع QA المجال المفتوح على الجداول لأول مرة، وإظهار أنه يمكن تحسين الاسترجاع من خلال المسترد المصمم للتعامل
كان هناك تقدم كبير في مجال الإجابة على الأسئلة الاستخراجية (EQA) في السنوات الأخيرة.ومع ذلك، فإن معظمهم يعتمدون على التوضيحية الخاصة بالإجابة في الممرات المقابلة.في هذا العمل، نتعلم مشكلة EQA عندما لا توجد شروح موجودة للإجابة فترة الإجابة، أي، عندما