الملخص نقدم آلية بسيطة ولكن مرنة لتعلم خطة وسيطة للأرض جيل من ملخصات الجماعة. على وجه التحديد، نقوم بإعداد الملخصات المستهدفة (أو المطالبة) مع سلاسل الكيانات --- ترتيب تسلسل الكيانات المذكورة في الملخص. ثم يتم تدريب نماذج التسلسل المستندة إلى التسلسل على المحولات لتوليد سلسلة الكيان ثم تابع إنشاء الملخص مشروط على سلسلة الكيان والإدخال. جربنا كلا من الاحتمالات وتصفيتها مع هدف تخطيط المحتوى هذا. عند تقييمها على CNN / Dailymail، XSUM، SAMSUM، وبيلسين، نوضح تجريبيا أن الجيل الأسطوري له هدف التخطيط يحسن خصوصية الكيان والتخطيط في ملخصات لجميع مجموعات البيانات، وتحقق أداء حديثة على XSUM و SAMSUM من حيث الحمر. علاوة على ذلك، نوضح تجريبيا أن التخطيط مع سلاسل الكيانات يوفر آلية للسيطرة على الهلوسة في ملخصات مبادرة. من خلال مطالبة وحدة فك الترميز بخطة محتوى معدلة تنخفض الكيانات الهلوسة، فإننا نتفوق من الأساليب الحديثة من خلال الإخلاص عند تقييمها تلقائيا والبشر.
Abstract We introduce a simple but flexible mechanism to learn an intermediate plan to ground the generation of abstractive summaries. Specifically, we prepend (or prompt) target summaries with entity chains---ordered sequences of entities mentioned in the summary. Transformer-based sequence-to-sequence models are then trained to generate the entity chain and then continue generating the summary conditioned on the entity chain and the input. We experimented with both pretraining and finetuning with this content planning objective. When evaluated on CNN/DailyMail, XSum, SAMSum, and BillSum, we demonstrate empirically that the grounded generation with the planning objective improves entity specificity and planning in summaries for all datasets, and achieves state-of-the-art performance on XSum and SAMSum in terms of rouge. Moreover, we demonstrate empirically that planning with entity chains provides a mechanism to control hallucinations in abstractive summaries. By prompting the decoder with a modified content plan that drops hallucinated entities, we outperform state-of-the-art approaches for faithfulness when evaluated automatically and by humans.
المراجع المستخدمة
https://aclanthology.org/
تعتمد نماذج تلخيص الجماع بشكل كبير على آليات النسخ، مثل شبكة المؤشر أو الاهتمام، لتحقيق أداء جيد، تقاس بالتداخل النصي مع الملخصات المرجعية.نتيجة لذلك، تبقى الملخصات التي تم إنشاؤها بالقرب من التركيبات في المستند المصدر.نقترح نموذج * الحكم * نموذج لتو
نماذج التلخيص الحديثة تولد بطلاقة للغاية ولكن في كثير من الأحيان مخرجات غير موثوق بها في كثير من الأحيان.هذه الدافع الطفرة من المقاييس التي تحاول قياس واقعية الملخصات التي تم إنشاؤها تلقائيا.نظرا لعدم وجود معايير مشتركة، لا يمكن مقارنة هذه المقاييس.ع
على الرغم من التقدم الكبير في تلخيص الجماع العصبي، أظهرت الدراسات الحديثة أن النماذج الحالية عرضة لإنشاء ملخصات غير مخلصة للسياق الأصلي. لمعالجة المشكلة، نقوم بدراسة توليد واختيار مرشح النقيض كتقنية نطاقات ما بعد المعالجة النموذجية لتصحيح الهلوسة الخ
تلخيص الجماعي، مهمة توليد ملخص موجز لمستندات المدخلات، يتطلب: (1) التفكير في المستند المصدر لتحديد القطع البارزة من المعلومات المنتشرة عبر المستند الطويل، و (2) تأليف نص متماسك بإعادة بناء هذه الحقائق البارزة في ملخص أقصر يعكس بإخلاص العلاقات المعقدة
هناك فرق حاسم بين تلخيص المستندات الفردية والمتعددة هو كيف يتجلى المحتوى البارز نفسه في المستند (المستندات). على الرغم من أن هذا المحتوى قد يظهر في بداية وثيقة واحدة، إلا أن المعلومات الأساسية تكرر بشكل متكرر في مجموعة من المستندات المتعلقة بموضوع مع