الملخص نقدم نموذجا يستند إلى الذاكرة للتحليل الدلالي المعتمد على السياق.تركز النهج السابقة على تمكين وحدة فك الترميز لنسخ أو تعديل التحليل من الكلام السابق، على افتراض وجود تبعية بين الحواجز الحالية والسابقة.في هذا العمل، نقترح تمثيل معلومات سياقية باستخدام ذاكرة خارجية.نحن نتعلم وحدة تحكم ذاكرة السياق التي تدير الذاكرة عن طريق الحفاظ على المعنى التراكمي لإعلام المستخدمين المتسلسلين.نقيم نهجنا على ثلاثة معايير تحليل الدلالات.تظهر النتائج التجريبية أن طرازنا يمكن أن يقوم بتحسين معالجة المعلومات التي تعتمد على السياق وتظهر الأداء المحسن دون استخدام أجهزة فك تشفير المهام الخاصة.
Abstract We present a memory-based model for context- dependent semantic parsing. Previous approaches focus on enabling the decoder to copy or modify the parse from the previous utterance, assuming there is a dependency between the current and previous parses. In this work, we propose to represent contextual information using an external memory. We learn a context memory controller that manages the memory by maintaining the cumulative meaning of sequential user utterances. We evaluate our approach on three semantic parsing benchmarks. Experimental results show that our model can better process context-dependent information and demonstrates improved performance without using task-specific decoders.
المراجع المستخدمة
https://aclanthology.org/
يركز تحليل المعنويات المستندة إلى جانب جوانب (ABASA) عادة على استخراج الجوانب والتنبؤ بمشاعرهم على جمل فردية مثل مراجعات العملاء. في الآونة الأخيرة، تلقت منصة أخرى من برنامج تقاسم الرأي، وهي منتدى الإجابة على السؤال (QA)، شعبية متزايدة، التي تتراكم ع
يمكن أن تستفيد مهام التعلم المختلفة من الوصول إلى معلومات خارجية عن طرائق مختلفة، مثل النص والصور.ركز العمل الحديث على تعلم الهندسة مع ذكريات كبيرة قادرة على تخزين هذه المعرفة.نقترحنا زيادة شبكات عصبية محول التوليد مع وحدات جلب المعلومات المستندة إلى
في حين أن العديد من المحاولات قد بذلت لتحليل بناء الجملة والدلالات، فإن الأداء العالي في مجال واحد يأتي عادة بسعر الأداء في الآخر.يتناقض هذا المقارضة مع مجموعة الأبحاث الكبيرة التي تركز على التفاعلات الغنية في واجهة Syntax - Semantics.نستكشف هياكنات
يعد تحليل الإطار الدلالي مهمة تحليل دلالية تعتمد على Framenet التي تلقت اهتماما كبيرا مؤخرا.تتضمن المهمة عادة ثلاث مجموعات فرعية بالتتابع: (1) التعرف المستهدف، (2) تصنيف الإطار و (3) وصف الدور الدليمي.ترتبط المهارات الفرعية الثلاثة ارتباطا وثيقا أثنا
تحظى بشعبية تطبيق النماذج العصبية القائمة على الرسم البياني في دراسات تحليل المعفاة القائمة على الجانب القائم على الجانب (ABSA) لاستخدام علاقات الكلمة من خلال يوزع التبعية لتسهيل المهمة مع التوجيه الدلالي الأفضل لتحليل السياق والكلمات. ومع ذلك، فإن م