ترغب بنشر مسار تعليمي؟ اضغط هنا

ضغط النماذج المستندة إلى المحولات على نطاق واسع: دراسة حالة على بيرت

Compressing Large-Scale Transformer-Based Models: A Case Study on BERT

223   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

حققت النماذج المستندة إلى المحولات المسببة للمحرسة مسبقا أداء حديثة لمختلف مهام معالجة اللغة الطبيعية (NLP).ومع ذلك، غالبا ما تكون هذه النماذج مليارات مليارات من المعلمات، وبالتالي فهي جائعة جدا للجوع وحسابات كثيفة لتناسب أجهزة أو تطبيقات منخفضة القدرة مع متطلبات زمنية صارمة.علاج واحد محتمل لهذا هو الضغط النموذجي، مما جذبت اهتماما كبيرا للبحث.هنا، نلخص البحث في ضغط المحولات، مع التركيز على نموذج بيرت الشهير بشكل خاص.على وجه الخصوص، نقوم بمسح حالة الفن في ضغط بيرت، نوضح أفضل الممارسات الحالية لضغط نماذج محولات واسعة النطاق، ونحن نقدم رؤى في أعمال أساليب مختلفة.يتم إلقاء تصنيفنا وتحليلنا الضوء على اتجاهات البحث المستقبلية الواعدة لتحقيق نماذج NLP خفيفة الوزن ودقيقة وأجنحة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يوضح هذا العمل عملية تطوير بنية تعلم الآلة للاستدلال الذي يمكن أن يتجاوز حجم كبير من الطلبات.استخدمنا نموذج بيرت الذي كان يركض بشكل جيد لتحليل العاطفة، وإرجاع توزيع احتمالية للعواطف بالنظر إلى فقرة.تم نشر النموذج كخدمة GRPC على KUBERNNTES.تم استخدام Apache Spark لأداء الاستدلال على دفعات عن طريق استدعاء الخدمة.واجهنا بعض تحديات الأداء والتزامن وإنشاء حلول لتحقيق وقت التشغيل بشكل أسرع.بدءا من 200 طلب استنتاج ناجح في الدقيقة، تمكنا من تحقيق ما يصل إلى 18 ألف طلب ناجح في الدقيقة مع نفس تخصيص الموارد الوظيفية الدفاعية.نتيجة لذلك، نجحنا في تخزين احتمالات العاطفة لمدة 95 مليون فقرات في غضون 96 ساعة.
توفر الشبكات العصبية القائمة على المحولات أداء تصنيف جيد للغاية عبر مجموعة واسعة من المجالات، لكن لا تقدم تفسيرات توقعاتها.في حين أن العديد من طرق التفسير، بما في ذلك الشكل، فإن معالجة مشكلة تفسير نماذج التعلم العميق، لا تتكيف معها للعمل على الشبكات العصبية القائمة على أحدث الأحوال مثل بيرت.مقرر آخر لهذه الطرق هو أن تصور التفسيرات الخاصة بهم في شكل قوائم من الكلمات الأكثر صلة لا يأخذ في الاعتبار الطبيعة المتسلسلة والهيكلية للنص.تقترح هذه الورقة طريقة TransShap التي تتكيف مع النماذج المحول بما في ذلك مصنفات النص المستند إلى BERT.تتقدم تصورات الشكل من خلال إظهار التفسيرات بطريقة متتالية، وتقييمها من قبل المقيمين البشري كمنافسة للحلول الحديثة.
يتم تدريب نماذج استرجاع الحالية على نطاق واسع على نطاق واسع مع 0-1 تسمية صعبة تشير إلى ما إذا كان الاستعلام مناسب بمستند، وتجاهل المعلومات الغنية من درجة الأهمية.تقترح هذه الورقة تحسين الاسترجاع القائم على التضمين من منظور توصيف أفضل شهادة استفسار ال وثيقة عن طريق إدخال تحسين التسمية (LE) لأول مرة.لتوليد توزيع الملصقات في سيناريو استرجاع، نقوم بتصميم طريقة رواية وفعالة تم إشرافها التي تتضمن المعرفة السابقة من أساليب الترجيح الديناميكي إلى تضمينات سياقية.تتفوقت طريقتنا بشكل كبير أربع نماذج استرجاع قابلة للتنافسية ونظرائها المجهزة بتقنيتين بديلين من نماذج التدريب مع توزيع الملصقات التي تم إنشاؤها كمعلومات الإشراف المساعدة.يمكن ملاحظة التفوق بسهولة على مهام استرجاع اللغة الإنجليزية والصينية على نطاق واسع تحت إعدادات بدء التشغيل القياسية والباردة.
نقدم مبادرة Norlm المستمرة لدعم إنشاء واستخدام نماذج اللغة السياقية الكبيرة للغاية للنرويجية (ومن حيث المبدأ لغات الشمال الأخرى)، بما في ذلك بيئة برنامج جاهزة للاستخدام، بالإضافة إلى تقرير خبرة لإعداد البيانات والتدريبوبعدتقدم هذه الورقة أول نماذج لغ وية واسعة النطاق للنرويجية، استنادا إلى كل من أطر ELMO و BERT.بالإضافة إلى تفصيل عملية التدريب، نقدم نتائج مرجعية للتناقض على مجموعة من مهام NLP للنرويجية.للحصول على خلفية إضافية والوصول إلى البيانات والنماذج والبرامج، يرجى الاطلاع على: http://norlm.nlpl.eu
مشكلة استرجاع المستندات المستندة إلى المستندات المستندة إلى تضمينها هي موضوع ساخن في مجال استرجاع المعلومات (IR).بالنظر إلى أن نماذج اللغة المدربة مسبقا مثل بيرت حققت نجاحا كبيرا في مجموعة واسعة من مهام NLP، فإننا نقدم نموذجا رباعية لاسترجاع فعال وفع ال في هذه الورقة.على عكس معظم طرازات استرجاع أسلوب بيرت الموجود، والتي تركز فقط على مرحلة الترتيب في أنظمة الاسترجاع، فإن نموذجنا يجعل تحسينات كبيرة في مرحلة الاسترجاع وتزود المسافات بين الحالات السلبية السلبية والسلبية البسيطة للحصول على تضمين أفضل.توضح النتائج التجريبية أن لدينا QuadrouPletbert تحقق نتائج أحدث النتائج في مهام الاسترجاع على نطاق واسع القائم.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا