تعتمد أنظمة مجردة للاستفادة من النطاق المفتوح (OpenQA) بشكل عام على المسترد لإيجاد مقاطع مرشحة في كوربس كبيرة وقارئ لاستخراج إجابات من تلك الممرات.في العمل الحديث بكثير، المسترد هو عنصر تعلم يستخدم تمثيلات ناقلات الخشنة من الأسئلة والمرورات.نقول أن خيار النمذجة هذا غير معبرة بما فيه الكفاية للتعامل مع تعقيد أسئلة اللغة الطبيعية.لمعالجة هذا، نحدد Colbert-Qa، الذي يتكيف مع نموذج استرجاع العصبي القابل للتطوير كولبيرت إلى OpenQA.Colbert يخلق تفاعلات جيدة المحبوس بين الأسئلة والمرورات.نقترح استراتيجية إشرافية ضعيفة فعالة تستخدم Colbert لإنشاء بيانات التدريب الخاصة بها.هذا يحسن إلى حد كبير استرجاع OpenQA على الأسئلة الطبيعية والتشكيني و Triviaqa، ويقوم النظام الناتج بأداء OpenQa الاستخراجي من بين الفن على جميع مجموعات البيانات الثلاثة.
Abstract Systems for Open-Domain Question Answering (OpenQA) generally depend on a retriever for finding candidate passages in a large corpus and a reader for extracting answers from those passages. In much recent work, the retriever is a learned component that uses coarse-grained vector representations of questions and passages. We argue that this modeling choice is insufficiently expressive for dealing with the complexity of natural language questions. To address this, we define ColBERT-QA, which adapts the scalable neural retrieval model ColBERT to OpenQA. ColBERT creates fine-grained interactions between questions and passages. We propose an efficient weak supervision strategy that iteratively uses ColBERT to create its own training data. This greatly improves OpenQA retrieval on Natural Questions, SQuAD, and TriviaQA, and the resulting system attains state-of-the-art extractive OpenQA performance on all three datasets.
المراجع المستخدمة
https://aclanthology.org/
يحتاج تحليل الأدبيات العلمي إلى التعرف على الكيان المسمى بشكل جيد (NER) لتوفير مجموعة واسعة من المعلومات للاكتشاف العلمي. على سبيل المثال، يحتاج أبحاث الكيمياء إلى دراسة العشرات إلى مئات أنواع الكيانات المتميزة والجمالية المميزة، مما يجعل التعليق الت
تتطلب شبكات العصبية العميقة الحديثة من بين الفن بيانات تدريبية ذات صلة واسعة النطاق غالبا ما تكون مكلفة للحصول على أو غير متوفرة للعديد من المهام. لقد ثبت أن الإشراف ضعيف في شكل قواعد خاصة بالمجال مفيدا في مثل هذه الإعدادات لإنشاء بيانات التدريب المس
أحد كتل المبنى الأولى لإنشاء مساعد صوت يتعلق بمهمة وضع علامة الكيانات أو السمات في استعلامات المستخدم. يمكن أن يكون هذا تحديا بشكل خاص عندما تكون الكيانات في العاشر من الملايين، كما هو الحال على سبيل المثال كتالوجات الموسيقى. تتطلب نماذج وضع العلامات
يمكن للبشر التمييز بين فئات جديدة بكفاءة للغاية مع عدد قليل من الأمثلة، إلى حد كبير بسبب حقيقة أن البشر يمكنهم الاستفادة من المعرفة التي تم الحصول عليها من المهام ذات الصلة.ومع ذلك، يميل نموذج تصنيف النص في التعلم العميق إلى الكفاح لتحقيق أداء مرض عن
نحن نقدم Rackbert، وهي طريقة ما قبل التدريب التي تزيد من طرازات اللغة بالقدرة على السبب في العلاقات الطويلة المدى والسياقات المختلفة المحتملة. على عكس أساليب ما قبل التدريب الموجودة التي تحصدها فقط إشارات تعليمية فقط من السياقات المحلية للنصوص التي ت