الملخص نقدم المحول الكمي (كيو تي)، نظام غير مؤظفي لتلخيص الرأي الاستخراجي.يستلهم كيو تي عن طريق السيارات الآلية المتناقلة الكمية، والتي نعدها لتلخيص الشعبية.يستخدم تفسير تجميع الفضاء الكمي وقواريل استخراج جديدة لاكتشاف الآراء الشعبية بين مئات من المراجعات، وهي خطوة كبيرة نحو تلخيص الرأي للنطاق العملي.بالإضافة إلى ذلك، تتيح كيو تي تلخيص قابل للتحكم دون مزيد من التدريب، من خلال الاستفادة من خصائص المساحة الكمي لاستخراج الملخصات الخاصة بالجانب.كما نجعل مساحة متاحة للجمهور، معيار تقييم واسع النطاق لرموز الرأي، يشتمل على ملخصات عامة وجوقية خاصة ب 50 فندقا.توضح التجارب وعد نهجنا، والتي تتم التحقق من صحتها عن طريق الدراسات الإنسانية حيث أظهر القضاة تفضيل واضح لطريقنا على خطوط الأساس التنافسية.
Abstract We present the Quantized Transformer (QT), an unsupervised system for extractive opinion summarization. QT is inspired by Vector- Quantized Variational Autoencoders, which we repurpose for popularity-driven summarization. It uses a clustering interpretation of the quantized space and a novel extraction algorithm to discover popular opinions among hundreds of reviews, a significant step towards opinion summarization of practical scope. In addition, QT enables controllable summarization without further training, by utilizing properties of the quantized space to extract aspect-specific summaries. We also make publicly available Space, a large-scale evaluation benchmark for opinion summarizers, comprising general and aspect-specific summaries for 50 hotels. Experiments demonstrate the promise of our approach, which is validated by human studies where judges showed clear preference for our method over competitive baselines.
المراجع المستخدمة
https://aclanthology.org/
يمكن أن تكون كمية المعلومات المتاحة عبر الإنترنت ساحقة للمستخدمين من هضمها، خاصة عند التعامل مع تعليقات المستخدمين الآخرين عند اتخاذ قرار بشأن شراء منتج أو خدمة. في هذا السياق، تكون أنظمة تلخيص الرأي ذات قيمة كبيرة، واستخراج معلومات مهمة من النصوص وت
تلخيص استخراج الجملة تقصر وثيقة عن طريق اختيار الجمل للحصول على ملخص مع الحفاظ على محتوياتها المهمة.ومع ذلك، فإن إنشاء ملخص متماسك وغني مفيد صلب باستخدام ترميز مدرب مسبقا مدربا مسبقا لأنه لا يتم تدريبه صراحة على تمثيل معلومات الجمل في وثيقة.نقترح نمو
ينتج العمل الأخير بشأن تلخيص الرأي ملخصات عامة بناء على مجموعة من مراجعات المدخلات وشعبية الآراء المعبر بها فيها.في هذه الورقة، نقترح نهج يسمح بتوليد ملخصات مخصصة بناء على استفسارات الجانب (E.G.، ووصف موقع وغرفة فندق).باستخدام مراجعة Corpus، نقوم بإن
لالتقاط بنية الرسم البياني الدلالي من النص الخام، يتم بناء معظم طرق التلخيص الموجودة على GNNS مع نموذج مدرب مسبقا.ومع ذلك، فإن هذه الأساليب تعاني من إجراءات مرهقة وحسابات غير فعالة وثائق نصية طويلة.لتخفيف هذه المشكلات، تقترح هذه الورقة HETFORMER، وهو
تلخيص ScreenPlay هي مهمة استخراج مشاهد إعلامية من سيناريو.يحتوي ScensingPlay على أحداث نقطة الدوران (TP) التي تغير اتجاه القصة وبالتالي تحديد هيكل القصة بشكل حاسم.وفقا لذلك، يمكن تعريف هذه المهمة باعتبارها مهمة تحديد TP.نقترح استخدام معلومات الحوار،