ترغب بنشر مسار تعليمي؟ اضغط هنا

تلخيص رأي قابل للتحكم في الجوانب

Aspect-Controllable Opinion Summarization

258   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

ينتج العمل الأخير بشأن تلخيص الرأي ملخصات عامة بناء على مجموعة من مراجعات المدخلات وشعبية الآراء المعبر بها فيها.في هذه الورقة، نقترح نهج يسمح بتوليد ملخصات مخصصة بناء على استفسارات الجانب (E.G.، ووصف موقع وغرفة فندق).باستخدام مراجعة Corpus، نقوم بإنشاء مجموعة بيانات تدريبية صناعية من (مراجعة، ملخص) أزواج مخصبة بوحدات التحكم في الارتفاع التي يسببها نموذج تعليمي متعدد الأمثلة يتنبأ بجوانب وثيقة على مستويات مختلفة من الحبيبية.نحن نغلق نموذج مسبق باستخدام مجموعة البيانات الاصطناعية لدينا وإنشاء ملخصات محددة من جانب جانب من خلال تعديل وحدات التحكم في الجانب.تشير التجارب في معيارين إلى أن نموذجنا يفوق على الحالة السابقة من الفن ويولد ملخصات شخصية عن طريق التحكم في عدد الجوانب التي تمت مناقشتها فيها.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

في هذه الورقة، نقترح إطار جيل عصبي قابل للتحكم يمكن أن توجه بمرونة تلخيص الحوار مع تخطيط الكيانات المسماة الشخصية. يتم تعديل التسلسلات الشرطية لتحديد أنواع المعلومات أو منظور التركيز عند تشكيل ملخصات لمعالجة المشكلة الخاضعة للحدود في مهام التلخصات. ي دعم هذا الإطار نوعين من حالات الاستخدام: (1) منظور شامل، وهو حالة غرض لأغراض عامة مع عدم تحديد تفضيل المستخدم، بالنظر إلى نقاط موجزة من جميع محطات المحادثة والأشخاص المذكورين؛ (2) منظور التركيز، ضع الملخص بناء على كيان شخصي محدد من قبل المستخدم، والتي يمكن أن تكون واحدة من المحاورين أو أحد الأشخاص المذكورين في المحادثة. أثناء التدريب، استغلنا تخطيط حدوثها للكيانات المسماة الشخصية ومعلومات العناية الأساسية لتحسين الاتساق الزمني وتقليل الهلوسة في الجيل العصبي. تظهر النتائج التجريبية أن إطار عملنا المقترح يولد ملخصات بطلاقة ومتسقة في الواقع بموجب ضوابط التخطيط المختلفة باستخدام المقاييس الموضوعية والتقييمات البشرية.
في التطبيقات العملية للجدل الدلالي، نريد في كثير من الأحيان تغيير سلوك المحلل بسرعة، مثل تمكينه من التعامل مع الاستعلامات في مجال جديد، أو تغيير تنبؤاتها على بعض الاستفسارات المستهدفة. على الرغم من أنه يمكننا إدخال أمثلة تدريبية جديدة تظهر السلوك الم ستهدف، فإن آلية سن تغييرات السلوكية دون إعادة تدريب طراز باهظ الثمن سيكون أفضل. تحقيقا لهذه الغاية، نقترح المحلل الدلالي القابل للتحكم عبر استرجاع Exemplar (Casper). نظرا لاستعلام المدخلات، يسترد المحلل تحليل الخرزات ذات الصلة من مؤشر استرجاع، ويعززها إلى الاستعلام، ثم يطبق نموذج SEQ2SEQ Generative لإنتاج تحليل إخراج. تعمل EXEMPLARS كآلية مراقبة على النموذج العام العام: من خلال معالجة مؤشر الاسترجاع أو كيفية إنشاء الاستعلام المعزز، يمكننا معالجة سلوك المحلل المحلل. على مجموعة بيانات MTOP، بالإضافة إلى تحقيق أحدث من الفن في الإعداد القياسي، نظهر أن كاسبر يمكن أن تحليل الاستعلامات في مجال جديد، أو تكييف التنبؤ باتجاه الأنماط المحددة، أو التكيف مع مخططات الدلالات الجديدة دون الحاجة إلى الحاجة إلى مزيد من إعادة تدريب النموذج.
تحسن تبسيط النص قابلية قراءة الجمل من خلال العديد من تحويلات إعادة كتابة، مثل إعادة الصياغة المعجمية والحذف والتقشير. تعتبر أنظمة التبسيط الحالية في الغالب نماذج تسلسل التسلسل التي يتم تدريبها على نهاية إلى نهاية لأداء كل هذه العمليات في وقت واحد. وم ع ذلك، فإن هذه الأنظمة تحد من نفسها لحذف الكلمات ويمكنها بسهولة التكيف مع متطلبات الجماهير المستهدفة المختلفة. في هذه الورقة، نقترح نهجا مختلطا هجينا رواية يرفع القواعد ذات الدوافع اللغوية لتقسيم وحذفها، والأزواج مع نموذج إعادة الصياغة العصبية لإنتاج أنماط إعادة كتابة متنوعة. نقدم طريقة جديدة لتعزيز البيانات لتحسين القدرة على إعادة صياغة نموذجنا. من خلال التقييمات التلقائية والدليلية، نوضح أن نموذجنا المقترح يحدد حالة جديدة من بين المهمة، أو إعادة صياغة أكثر من النظم الحالية، ويمكن أن تتحكم في درجة كل عملية تبسيط مطبقة على نصوص الإدخال.
يمكن أن تكون كمية المعلومات المتاحة عبر الإنترنت ساحقة للمستخدمين من هضمها، خاصة عند التعامل مع تعليقات المستخدمين الآخرين عند اتخاذ قرار بشأن شراء منتج أو خدمة. في هذا السياق، تكون أنظمة تلخيص الرأي ذات قيمة كبيرة، واستخراج معلومات مهمة من النصوص وت قديمها للمستخدم بطريقة أكثر فهمة. من المعروف أيضا أن استخدام التمثيلات الدلالية يمكن أن يفيدن جودة الملخصات التي تم إنشاؤها. تهدف هذه الورقة إلى تطوير أساليب تلخيص الرأي بناء على مجردة معنى تمثيل النصوص في اللغة البرتغالية البرازيلية. تم التحقيق في أربع طرق مختلفة، إلى جانب بعض مناهج الأدب. تظهر النتائج أن الأسلوب المستند إلى جهاز التعلم الآلي أنتج ملخصات ذات جودة أعلى، مما يتفوق على تقنيات الأدب الأخرى على الرسوم البيانية الدلالية المصنوعة يدويا. نعرض أيضا أن استخدام الرسوم البيانية المحيطة بها أكثر من تلك المشروح يدويا ضرر بالإخراج. أخيرا، يشير تحليل مدى أهمية أنواع المعلومات المختلفة لعملية التلخيص إلى أن استخدام ميزات تحليل المعرفات لم يحسن جودة ملخص.
مجردة نحن ندرس ملخصات نصية يمكن السيطرة عليها، والتي تتيح للمستخدمين السيطرة على سمة معينة (E.G.، الحد الطول) من الملخصات التي تم إنشاؤها.في هذا العمل، نقترح إطار تدريبي جديد يعتمد على عملية اتخاذ قرار ماركوف المقيد (CMDP)، والتي تتضمن ملاءمة وظيفة ا لمكافأة إلى جانب مجموعة من القيود، لتسهيل سيطرة تلخيص أفضل.تشجع الوظيفة المكافأة على جيل تشبه المرجع الخطي البشري، في حين يتم استخدام القيود لتمنع بشكل صريح الملخصات التي تم إنشاؤها من انتهاك الاحتياجات التي يفرضها المستخدم.يمكن تطبيق إطارنا للتحكم في السمات المهمة من التلخيص، بما في ذلك الطول والكيانات المغطاة والتجريد، حيث أننا نضع قيود محددة لكل من هذه الجوانب.تبين تجارب واسعة النطاق على المعايير الشعبية أن إطار عمل مؤتمر الأطراف الخاص ب CMDP يساعد في توليد ملخصات إعلامية مع الامتثال لمتطلبات سمة معينة

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا