ترغب بنشر مسار تعليمي؟ اضغط هنا

Deepblueai في TEXTGRAPHS 2021 المهمة المشتركة: علاج تجديد تفسير القفزات متعددة القفز كشام

DeepBlueAI at TextGraphs 2021 Shared Task: Treating Multi-Hop Inference Explanation Regeneration as A Ranking Problem

213   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تصف هذه الورقة النظام الفائز للمهمة المشتركة للمكاسب 2021: تجديد شرح القفز متعدد القفز. بالنظر إلى سؤال وإجابته الصحيحة المقابلة، تهدف هذه المهمة إلى تحديد الحقائق التي يمكن أن توضح سبب صحة الإجابة لهذا السؤال والرد (ضمان الجودة) من قاعدة معارف كبيرة. لمعالجة هذه المشكلة وتسريع التدريب أيضا، تتضمن استراتيجيتنا خطوتين. أولا، قم بضبط النماذج اللغوية المدربة مسبقا (PLMS) مع فقدان ثلاثي لاستدعاء الحقائق ذات الصلة Top-K لكل سؤال وجواب. بعد ذلك، اعتماد نفس الهندسة المعمارية لتدريب نموذج إعادة الترتيب لترتيب المرشحين الأعلى K. لتعزيز الأداء، نحن متوسط ​​النتائج من النماذج المستندة إلى PLMS مختلفة (E.G.، ROBERTA) وإعدادات المعلمات المختلفة لجعل التنبؤات النهائية. يوضح التقييم الرسمي أنه، يمكن أن يتفوق نظامنا على ثاني أفضل نظام بمقدار 4.93 نقطة، مما يثبت فعالية نظامنا. كان رمزنا مفتوح المصدر، والعنوان هو https://github.com/deepblueaii/textgraphs-15



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تتناول هذه الورقة مناهج مختلفة لمهمة الكشف عن المسيح السامة. كانت المشكلة التي تطرحتها المهمة هي تحديد الكلمات التي تساهم في الغالب في الاعتراف بالوثيقة السامة. على عكس التصنيف الثنائي للنصوص بأكملها، يمكن أن يكون التقييم على مستوى الكلمات استخداما ك بيرا خلال الاعتدال التعليق، والسماح أيضا بفهم أكثر متعمقا من تنبؤات النموذج. نظرا لأن الهدف الرئيسي هو ضمان الشفافية والتفاهم، تركز هذه الورقة على النهج الحالية للدولة الحالية بناء على مفاهيم منظمة العفو الدولية القابلة للتفسير ويقارنها بحل تعليمي مشارضة مع تسميات مستوى الكلمات. يتكون العمل من أساليب Xai التي توفر توضيحا تلقائيا للنماذج المدربة للتصنيف الثنائي للوثائق السامة: نموذج LSTM مع الاهتمام كهدوء خاص بالنماذج وقيم SHOPLEY لتفسير تنبؤات برت كطريقة نموذجية للنموذج. تعتبر النهج المتنافس هذه المشكلة كتصنيف رمزي تحت إشراف، حيث تم اختبار النماذج مثل بيرت وتعديلاتها. تهدف الورقة إلى استكشاف وقارن وتقييم جودة التنبؤات بطرق مختلفة في المهمة. كما تمت مناقشة مزايا كل نهج وإشراف البحث الإضافي أيضا.
تقدم هذه الورقة وصفا للمهمة المشتركة Rocling 2021 في تحليل المعنويات الأبعاد للنصوص التعليمية.قدمنا اثنين من أشواط في الاختبار النهائي.كلا يدير يستخدم نموذج الانحدار القياسي.يستخدم Run1 الإصدار الصيني من Bert كقاعدة، وفي Run2 نستخدم الإصدار المبكر من Macbert أن النسخة الصينية من نموذج روبرتا يشبه BERT، Roberta-WWM-Ext.باستخدام نموذج قوي قبل التدريب من بيرت لتضمين النص للمساعدة في تدريب النموذج.
التعقيد المعجمي يلعب دورا مهما في فهم القراءة.لا يمكن استخدام تنبؤ التعقيد المعجمي (LCP) كجزء من أنظمة التبسيط المعجمية، ولكن أيضا كتطبيق مستقل لمساعدة الأشخاص على قراءة أفضل.تقدم هذه الورقة النظام الفائز الذي قدمناه إلى مهمة LCP المشتركة في Semeval 2021 القادرة على التعامل مع كل من المهام الفرعية.نقوم أولا بإجراء ضبط جيد على أرقام نماذج اللغة المدربة مسبقا (PLMS) مع العديد من أنواع التشنجات المختلفة واستراتيجيات التدريب المختلفة مثل وضع العلامات الزائفة والبيانات.ثم يتم تطبيق آلية تكديس فعالة على رأس Plms المصنفات الدقيقة للحصول على التنبؤ النهائي.تظهر النتائج التجريبية على مجموعة البيانات المعقدة صحة طريقتنا ونحن رتب أولا والثاني للمضمون الفرعي 2 و 1.
نقوم بتطوير نظام لمهمة استخراج الحقائق الحميرة والتحقق من تحديد مجموعة أولية من الأدلة المحتملة، ثم يتابع الأدلة المفقودة في القفزات اللاحقة من خلال محاولة توليدها، مع وجود وحدة توقعات القفز التالية "التي يتم مطابقة خرجها من عناصر الصفحاتمقال متوقع.ت سعى للحصول على أدلة مع وحدة تنبؤ القفز التالية تستمر في تحسين النتيجة الحميرة لمدة تصل إلى سبع قفزات.يتم تدريب تصنيف العلامات على سلاسل الأدلة المستخرجة غير كاملة غير كاملة، واستخدام تلميحات التي تسهل المقارنة العددية.يحقق النظام .281 النتيجة الحميرة ودقة التسمية .658 على مجموعة التطوير، وينتهي في المرتبة الثانية باستخدام 0.259 درجة حمامة ودقة التسمية .576 على مجموعة الاختبار.
من بين المهام التي تحفزها انتشار المعلومات الخاطئة، فإن اكتشاف الدعاية تحديا بشكل خاص بسبب عجز التعليقات التوضيحية الدقيقة الدقيقة اللازمة لتدريب نماذج التعلم الآلي.هنا نظهر كيف يمكن الاستفادة من البيانات من المهام الأخرى ذات الصلة، بما في ذلك تقييم المصداقية، في إطار التعلم متعدد المهام (MTL) لتسريع عملية التدريب.وتحقيقا لهذه الغاية، نقوم بتصميم نموذج يستند إلى بيرت مع طبقات إخراج متعددة، وتدريبه في العديد من سيناريوهات MTL وأداء التقييم ضد معيار الذهب السائم.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا