ترغب بنشر مسار تعليمي؟ اضغط هنا

أقرب نهج جار للكشف عن المشاعر في تغريدات

Nearest neighbour approaches for Emotion Detection in Tweets

358   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

كشف العاطفة مهمة مهمة يمكن تطبيقها على بيانات وسائل التواصل الاجتماعي لاكتشاف المعرفة الجديدة.في حين أن استخدام طرق التعلم العميق لهذه المهمة كان سائدا، فهي نماذج من الصندوق الأسود، مما يجعل قراراتها بجد لتفسير مشغل بشري.لذلك، في هذه الورقة، نقترح نهجا باستخدام Kevent Kearbors المرجح (KNN)، وهو نموذج تعليمي بسيط وسهل تنفيذي وشرحه.هذه الصفات يمكن أن تساعد في تعزيز موثوقية النتائج وتحليل الأخطاء التوجيه.على وجه الخصوص، نطبق نموذج KNN المرجح بمهمة الكشف عن العاطفة المشتركة في تغريدات Semeval-2018.يتم تمثيل التغريدات باستخدام أساليب مختلفة لتضمين نصية وعشرات المفردات المعجمية العاطفة، ويتم التصنيف من قبل مجموعة من نماذج KNN المرجحة.تتمتع أفضل أساليبنا بنتائج تنافسية مع حلول حديثة وفتح مسارا بديلا واعدا لأساليب الشبكة العصبية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

في اللغة الرومانية، هناك بعض الموارد لفهم النص التلقائي، ولكن بالنسبة للكشف عن المشاعر، لا يوجد أساس معجم، لا يوجد شيء. لتغطية هذه الفجوة، استخراجت بيانات من Twitter وإنشاء بيانات DataSet الأولى التي تحتوي على تغريدات مشروحة مع خمسة أنواع من العواطف: الفرح والخوف والحزن والغضب والمحايد، بقصد استخدام مهام التعدين وتحليل الرأي. في هذه المقالة، نقدم بعض ميزات مجموعة بياناتنا الجديدة، وخلق معيارا لتحقيق أول نموذج لتعلم الآلات الإشراف للكشف عن المشاعر التلقائية في النصوص القصيرة الرومانية. نحقق في أداء أربع نماذج تعلم الآلة الكلاسيكية: بايس ساذجة متعددة الأثر، الانحدار اللوجستي، تصنيف ناقلات الدعم وتصنيف ناقلات الدعم الخطي. نحن نحقق أيضا في المزيد من الأساليب الحديثة مثل FastText، والتي تستخدم معلومات الكلمات الفرعية. أخيرا، نحن نغلق برت الرومانية لتصنيف النص وإظهار تجاربنا أن النموذج القائم على بيرت لديه أفضل أداء لمهمة الكشف عن العاطفة من التغريدات الرومانية. الكلمات المفتاحية: الكشف عن العاطفة، تويتر، الرومانية، التعلم الآلي الإشراف
جذبت الكشف عن المشاعر من وظائف وسائل التواصل الاجتماعي اهتماما ملحوظا من مجتمع معالجة اللغة الطبيعية (NLP) في السنوات الأخيرة.تختلف طرق الحصول على ملصقات ذهبية لتدريب واختبار أنظمة الكشف عن المشاعر التلقائية بشكل كبير من دراسة واحدة إلى أخرى، وتشكل م سألة موثوقية الملصقات الذهبية وتحصل على نتائج التصنيف.تستكشف هذه الدراسة بشكل منهجي عدة طرق للحصول على ملصقات ذهبية لنموذج EKMAN الخاص ببيانات Twitter وتأثير الاستراتيجية المختارة في نتائج التصنيف اليدوي.
تقدم هذه الورقة استراتيجيتنا لمعالجة المهمة المشتركة EACL WANLP-2021: السخرية والكشف عن المعنويات.يهدف أحد المهن الفرعية إلى تطوير نظام يحدد ما إذا كانت سقسقة عربية معينة ساخرة في الطبيعة أم لا، في حين أن الآخر يهدف إلى تحديد مشاعر سقسقة اللغة العربي ة.نحن نقترب من المهمة في خطوتين.تتضمن الخطوة الأولى مسبقا لمعلومات البيانات المقدمة من خلال إجراء الإدراج والحذف وعمليات التجزئة في أجزاء مختلفة من النص.تنطوي الخطوة الثانية على تجربة متغيرات متعددة من نماذج محولتين، Araelectra وعربت.تم تصنيف نهجنا النهائي في المرتبة السابعة والرابعة في المهاجمين والكشف عن المشاعر الفرعية على التوالي.
نظرا لأن النهج القائم على المعجم هو أكثر أناقة علميا، أوضح مكونات الحل وأسهل التعميم إلى التطبيقات الأخرى، توفر هذه الورقة نهجا جديدا للغة الهجومية والكشف عن الكلام على وسائل التواصل الاجتماعي، والتي تجسد معجم من الهجوم الضمني والبريثوإقتصار التعبيرا ت المشروح مع المعلومات السياقية.نظرا لشدة تعليقات وسائل التواصل الاجتماعي المسيئة في البرازيل، وعدم وجود أبحاث باللغة البرتغالية والبرتغالية البرازيلية هي اللغة المستخدمة للتحقق من صحة النماذج.ومع ذلك، قد يتم تطبيق طريقتنا على أي لغة أخرى.تظهر التجارب التي أجراها فعالية النهج المقترح، مما يتفوق على الأساليب الأساسية الحالية للغة البرتغالية.
مشكلة الكشف عن الإجهاد النفسي في الوظائف عبر الإنترنت، وعلى نطاق أوسع، من اكتشاف الناس في محنة أو في حاجة إلى مساعدة، هو تطبيق حساس له القدرة على تفسير النماذج أمر حيوي.هنا، نقدم العمل في استكشاف استخدام مهمة ذات صلة من الناحية الدلوية، والكشف عن الم شاعر، من أجل الكشف عن الإجهاد النفسي غير المختص به بنفس القدر ولكن أكثر قابلية للتفسير ومقارنة مع نموذج الصندوق الأسود.على وجه الخصوص، نستكشف استخدام التعلم متعدد المهام وكذلك طراز اللغة القائمة على العاطفة.مع نماذجنا المخفوعة العاطفة، نرى نتائج مماثلة لتحقيق أحدث بيرت.تبين تحليلنا للكلمات المستخدمة للتنبؤ أن نماذجنا المشنقة لدينا مرآة مكونات نفسية من الإجهاد.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا