لتحديث ترجمات النظام الأساسي الياباني بناء على تعديلاتهم، نحتاج إلى النظر في الترجمة؛ "وهذا هو، يجب علينا فقط تعديل التعبيرات ذات الصلة بالتعديل والاحتفاظ بالآخرين لتجنب سوء فهم محتوياتها. في هذه الورقة، نقدم تقييما تقييما وجزعة لتحسين تقييمات التركيز. يسمى Metric لدينا درجة شاملة للترجمة التفاضلية: (ISDIT). يتكون ISDIT من عاملين: (1) يتذكر N-Gram التعبيرات التي تتأثر بتعديلها و (2) الدقة N-Gram للمخرجات مقارنة بالرجوع إليها. يحل هذه المترية محل واحد موجود للهوية من خلال حساب جودة الترجمة في وقت واحد من التعبيرات التي تم تغييرها بالإضافة إلى ذلك من التعبيرات دون تغيير. كما نصدر حديثا على تجميع وجزعة للترجمة اليابانية للتعديل جزئيا تؤمن الترجمات بعد التعديل، في حين أن كوربوس التقييم الحالي لا. مع متري والجوربوس، ندرس أداء طرق الترجمة الحالية لترجمات التعديل الجزئي الياباني.
For updating the translations of Japanese statutes based on their amendments, we need to consider the translation focality;'' that is, we should only modify expressions that are relevant to the amendment and retain the others to avoid misconstruing its contents. In this paper, we introduce an evaluation metric and a corpus to improve focality evaluations. Our metric is called an Inclusive Score for DIfferential Translation: (ISDIT). ISDIT consists of two factors: (1) the n-gram recall of expressions unaffected by the amendment and (2) the n-gram precision of the output compared to the reference. This metric supersedes an existing one for focality by simultaneously calculating the translation quality of the changed expressions in addition to that of the unchanged expressions. We also newly compile a corpus for Japanese partially amendment translation that secures the focality of the post-amendment translations, while an existing evaluation corpus does not. With the metric and the corpus, we examine the performance of existing translation methods for Japanese partially amendment translations.
المراجع المستخدمة
https://aclanthology.org/
البرامج النصية - تسلسل الأحداث النموذجية التي تصف الأنشطة اليومية - تساعد في فهم الروايات من خلال توفير التوقعات، وحل الغموض، وملء المعلومات غير المستحقة. ومع ذلك، حتى الآن أثبتوا صعوبة في المؤلف أو استخراج النص. في هذا العمل، نوضح لأول مرة يمكن تصوي
نحن نستخدم مجموعة اختبار شبه آلية من أجل توفير تقييم لغوي محمول من أجل أنظمة الترجمة الآلية الحديثة. يشمل التقييم 18 الألمانية إلى الإنجليزية و 18 الإنجليزية إلى الألمانية، قدمت إلى مهمة مشتركة للترجمة بمؤتمر 2021 حول الترجمة الآلية. يضيف تقديمنا إلى
الملخص ندرس التعلم التعرف على الكيان المسمى في وجود التعليقات التوضيحية في الكيان المفقود.نحن نقترب من هذا الإعداد باسم وضع علامات مع المتغيرات الكامنة واقتراح خسارة جديدة، ونسبة الكيان المتوقعة، لتعلم النماذج بحضور العلامات المفقودة بشكل منهجي.نظرا
تم تقييم الترجمة الآلية (MT) حاليا بأحد طريقتين: بطريقة أحادية الأجل، بالمقارنة مع إخراج النظام إلى ترجمات مرجعية بشرية واحدة أو أكثر، أو في أزياء تقاطعات مدربة، من خلال بناء نموذج إشرافي للتنبؤ بعشرات الجودة من البيانات ذات العلامات على الإنسان. في
يقدم هذا العمل مجموعة متنوعة بسيطة لتقييم جودة الترجمة الآلية بناء على مجموعة من الرواية ومقاييس ثابتة.نقيم الفرقة باستخدام ارتباط لعشرات MQM القائم على الخبراء ورشة عمل WMT 2021 المقاييس.في كل من إعدادات المونولينغوية والصفرية القصيرة، نعرض تحسنا كب