في هذه الورقة، نقدم طلبنا إلى مهمة المقاييس المشتركة: Robleurt (تحسين تدريب Bleurt).بعد التحقيق في التطورات الأخيرة المتمثلة في المقاييس التدريبية التدريبية، نستنتج عدة جوانب ذات أهمية حيوية للحصول على نموذج متري أداء جيدا من قبل: 1) الاستفادة المشتركة مزايا النموذج المشترك بين المصدر والنموذج المرجعي فقط، 2) ما قبل التدريب المستمرنموذج مع أزواج البيانات الاصطناعية الضخمة، و 3) ضبط النموذج مع استراتيجية تنظيف البيانات.تظهر النتائج التجريبية أن نموذجنا يصل إلى ارتباطات حديثة مع التعليقات البشرية البشرية WMT2020 عند 8 من أزواج لغة 10 إلى الإنجليزية.
In this paper, we present our submission to Shared Metrics Task: RoBLEURT (Robustly Optimizing the training of BLEURT). After investigating the recent advances of trainable metrics, we conclude several aspects of vital importance to obtain a well-performed metric model by: 1) jointly leveraging the advantages of source-included model and reference-only model, 2) continuously pre-training the model with massive synthetic data pairs, and 3) fine-tuning the model with data denoising strategy. Experimental results show that our model reaching state-of-the-art correlations with the WMT2020 human annotations upon 8 out of 10 to-English language pairs.
المراجع المستخدمة
https://aclanthology.org/
تصف الورقة توضيحات TENTRANS إلى المهمة المشتركة ل WMT 2021 المشتركة.نستكشف تدريب مجموعة متنوعة من نماذج محولات الصغار الأصغر باستخدام إعداد المعلمين - طالب.يتم تدريب نموذجنا من خلال منصة تدريب متعددة اللغات المتطورة ذاتية اللغات ذاتية اللغويةونحن نطل
تصف هذه الورقة تقديم Papago إلى مهمة تقدير الجودة WMT 2021 1: التقييم المباشر على مستوى الجملة.يستكشف نظام تقدير الجودة متعدد اللغات لدينا مزيج من نماذج اللغة المحددة مسبقا وبنية التعلم متعددة المهام.نقترح خط أنابيب تدريب تكراري يعتمد على ما يحقظ بكم
في هذه الورقة، نصف إنشادنا إلى المهمة المشتركة بمقاييس WMT 2021.نستخدم الأسئلة والأجوبة التي تم إنشاؤها تلقائيا لتقييم جودة أنظمة الترجمة الآلية (MT).إن تقديمنا يبني على إطار MTEQA المقترح مؤخرا.تظهر التجارب على مجموعات بيانات تقييم WMT20 أنه على مست
تصف هذه الورقة تقديم ISTIC إلى مهمة الترجمة الآلية الثلاثية من الترجمة الآلية الروسية إلى الصينية ل WMT '2021. من أجل الاستفادة الكاملة من الشركة المقدمة وتعزيز أداء الترجمة من الروسية إلى الصينية، يتم استخدام طريقة المحور في موقعناالنظام الذي خط أنا
يعد تقييم جيل اللغة الطبيعي (NLG) مهمة متعددة الأوجه تتطلب تقييم معايير متعددة المرغوبة، على سبيل المثال، الطلاقة، والاستماس، والتغطية، والأهمية، والكفاية، والجودة الكلية، وما إلى ذلك عبر مجموعات البيانات الحالية لمدة 6 مهام NLG، نلاحظ أن درجات التقي