ترغب بنشر مسار تعليمي؟ اضغط هنا

نتائج مقاييس WMT21 المهمة المشتركة: تقييم المقاييس مع التقييمات البشرية القائمة على الخبراء على نطاق TED و TEWS

Results of the WMT21 Metrics Shared Task: Evaluating Metrics with Expert-based Human Evaluations on TED and News Domain

331   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تقدم هذه الورقة نتائج المهمة المشتركة للمقاييس WMT21. طلب من المشاركين تسجيل مخرجات أنظمة الترجمة المتنافسة في مهمة الترجمة الأخبار WMT21 مع مقاييس أوتوماتيكية على مجطتين مختلفتين: أخبار ومحادثات تيد. تم تقييم جميع المقاييس على مدى ارتباطها على مستوى النظام والقطاع مع التصنيفات البشرية. على عكس إصدارات السنوات السابقة، فقد استحوذنا هذا العام على تصنيفاتنا الإنسانية الخاصة بنا على أساس التقييم البشري القائم على الخبراء عبر مقاييس الجودة متعددة الأبعاد (MQM). يحتوي هذا الإعداد على العديد من المزايا: (1) قد أظهر التقييم القائم على الخبراء أنه أكثر موثوقية، (2) تمكنا من تقييم جميع المقاييس على مجاليين مختلفين باستخدام ترجمات نفس أنظمة MT، (III) أضفنا 5 إضافية الترجمات القادمة من نفس النظام أثناء تطوير النظام. بالإضافة إلى ذلك، صممنا ثلاث مجموعات تحدي تقيم متانة جميع المقاييس التلقائية. نقدم تحليلا مكثفا حول مدى أداء المقاييس على أزواج ثلاث لغات: الإنجليزية إلى الألمانية والإنجليزية إلى الروسية والصينية إلى الإنجليزية. نوضح تأثير الترجمات المرجعية المختلفة على المقاييس المستندة إلى المرجع ومقارنة شرح MQM القائم على الخبراء مع درجات DA المكتسبة بواسطة WMT.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

في هذه الورقة، نصف إنشادنا إلى المهمة المشتركة بمقاييس WMT 2021.نستخدم الأسئلة والأجوبة التي تم إنشاؤها تلقائيا لتقييم جودة أنظمة الترجمة الآلية (MT).إن تقديمنا يبني على إطار MTEQA المقترح مؤخرا.تظهر التجارب على مجموعات بيانات تقييم WMT20 أنه على مست وى النظام، يحقق Mteqa Metric أداء قابلا للمقارنة مع حلول حديثة أخرى، مع مراعاة كمية معينة فقط من الترجمة بأكملها.
شهد حقل NLP مؤخرا زيادة كبيرة في العمل المتعلق بتكاثر النتائج، وأكثر اعترافا بشكل عام بأهمية وجود تعريفات وممارسات مشتركة تتعلق بالتقييم. وقد تركز الكثير من العمل على الاستيلاء على الدرجات المترية حتى الآن، مع استنساخ نتائج التقييم البشرية التي تتلقى اهتماما أقل بكثير. كجزء من برنامج بحثي مصمم لتطوير نظرية وممارسة تقييم استنساخ في NLP، نظمت المهمة المشتركة الأولى بشأن استنساخ التقييمات البشرية، وتوبيخ 2021. تصف هذه الورقة المهمة المشتركة بالتفصيل، تلخص النتائج من كل مجال من دراسات الاستنساخ قدمت، ويوفر المزيد من التحليل المقارن للنتائج. من بين تسع تسجيلات الفريق الأولية، تلقينا عروض من أربعة فرق. كشف التحليل التلوي لدراسات الاستنساخ الأربعة عن درجات متفاوتة من التكاثر، وسمحت باستنتاجات أولية مبدئية للغاية حول أنواع التقييم التي تميل إلى تحسين استنساخ أفضل.
تركز المهمة المشتركة على تقييم الدقة على التقنيات (كلا اليدين والآلية) لتقييم الدقة الواقعية للنصوص التي تنتجها أنظمة NLG العصبية، في مجال التقارير الرياضية.قدم أربعة فرق تقنيات التقييم لهذه المهمة، باستخدام نهج وتقنيات مختلفة للغاية.طلبت التقديمات ا لأفضل أداء جيدا في هذه المهمة الصعبة.ومع ذلك، تكافح جميع التقديمات التلقائية للكشف عن الأخطاء الواقعية المعقدة دلالة أو بشكل غير رسمي (على سبيل المثال، بناء على حساب أو استنتاج غير صحيح).
تصف هذه الورقة تقديم Papago إلى مهمة تقدير الجودة WMT 2021 1: التقييم المباشر على مستوى الجملة.يستكشف نظام تقدير الجودة متعدد اللغات لدينا مزيج من نماذج اللغة المحددة مسبقا وبنية التعلم متعددة المهام.نقترح خط أنابيب تدريب تكراري يعتمد على ما يحقظ بكم يات كبيرة من البيانات الاصطناعية داخل المجال وتصفية البيانات الذهبية (المسمى).ثم قمنا بضغط نظامنا عبر تقطير المعرفة من أجل تقليل المعلمات بعد الحفاظ على أداء قوي.تنفذ أنظمتنا متعددة اللغات متعددة اللغات بشكل تنافسي في تعدد اللغات وجميع إعدادات زوج اللغة الفردية 11 بما في ذلك صفر النار.
تصف هذه الورقة مهمة Charles University الفرعية للمصطلحات المهمة المشتركة للترجمة في WMT21.الهدف من هذه المهمة هو تصميم نظام يترجم مع شروط معينة بناء على قاعدة بيانات المصطلحات المقدمة، مع الحفاظ على جودة الترجمة الشاملة عالية.تنافسنا في زوج اللغة الإ نجليزية الفرنسية.يعتمد نهجنا على توفير الترجمات المرغوبة إلى جانب جملة الإدخال وتدريب النموذج لاستخدام هذه المصطلحات المقدمة.نحن Lemmatize المصطلحات على حد سواء أثناء التدريب والاستدلال، للسماح للنموذج لمعرفة كيفية إنتاج الأشكال السطحية الصحيحة للكلمات، عندما تختلف عن النماذج المتوفرة في قاعدة بيانات المصطلحات.تم تصنيف تقديمنا في المرتبة الثانية في مقياس التطابق الدقيق الذي يقوم بتقييم قدرة النموذج على إنتاج المصطلحات المرغوبة في الترجمة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا