ترغب بنشر مسار تعليمي؟ اضغط هنا

Retroactive quantum jumps in a strongly-coupled atom-field system

101   0   0.0 ( 0 )
 نشر من قبل Hideo Mabuchi
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a novel type of conditional dynamic that occurs in the strongly-driven Jaynes-Cummings model with dissipation. Extending the work of Alsing and Carmichael [Quantum Opt. {bf 3}, 13 (1991)], we present a combined numerical and analytic study of the Stochastic Master Equation that describes the systems conditional evolution when the cavity output is continuously observed via homodyne detection, but atomic spontaneous emission is not monitored at all. We find that quantum jumps of the atomic state are induced by its dynamical coupling to the optical field, in order retroactively to justify atypical fluctuations in ocurring in the homodyne photocurrent.



قيم البحث

اقرأ أيضاً

We experimentally investigate the spin dynamics of one and two neutral atoms strongly coupled to a high finesse optical cavity. We observe quantum jumps between hyperfine ground states of a single atom. The interaction-induced normal mode splitting o f the atom-cavity system is measured via the atomic excitation. Moreover, we observe evidence for conditional dynamics of two atoms simultaneously coupled to the cavity mode. Our results point towards the realization of measurement-induced entanglement schemes for neutral atoms in optical cavities.
109 - T. Puppe , I. Schuster , P. Maunz 2007
Between mirrors, the density of electromagnetic modes differs from the one in free space. This changes the radiation properties of an atom as well as the light forces acting on an atom. It has profound consequences in the strong-coupling regime of ca vity quantum electrodynamics. For a single atom trapped inside the cavity, we investigate the atom-cavity system by scanning the frequency of a probe laser for various atom-cavity detunings. The avoided crossing between atom and cavity resonance is visible in the transmission of the cavity. It is also visible in the loss rate of the atom from the intracavity dipole trap. On the normal-mode resonances, the dominant contribution to the loss rate originates from dipole-force fluctuations which are dramatically enhanced in the cavity. This conclusion is supported by Monte-Carlo simulations.
The quantum dynamics of a strongly driven, strongly coupled single-atom-cavity system is studied by evaluating time-dependent second- and third-order correlations of the emitted photons. The coherent energy exchange, first, between the atom and the c avity mode, and second, between the atom-cavity system and the driving laser, is observed. Three-photon detections show an asymmetry in time, a consequence of the breakdown of detailed balance. The results are in good agreement with theory and are a first step towards the control of a quantum trajectory at larger driving strength.
We experimentally demonstrate magnon Kerr effect in a cavity-magnon system, where magnons in a small yttrium iron garnet (YIG) sphere are strongly but dispersively coupled to the photons in a three-dimensional cavity. When the YIG sphere is pumped to generate considerable magnons, the Kerr effect yields a perceptible shift of the cavitys central frequency and more appreciable shifts of the magnon modes. We derive an analytical relation between the magnon frequency shift and the drive power for the uniformly magnetized YIG sphere and find that it agrees very well with the experimental results of the Kittel mode. Our study paves the way to explore nonlinear effects in the cavity-magnon system.
130 - Yochai Werman 2020
A recent proposal by Hallam et al. suggested using the chaotic properties of the semiclassical equations of motion, obtained by the time dependent variational principle (TDVP), as a characterization of quantum chaos. In this paper, we calculate the L yapunov spectrum of the semiclassical theory approximating the quantum dynamics of a strongly interacting Rydberg atom array, which lead to periodic motion. In addition, we calculate the effect of quantum fluctuations around this approximation, and obtain the escape rate from the periodic orbit. We compare this rate to the rate extracted from the exact solution of the quantum theory, and find an order of magnitude discrepancy. We conclude that in this case, chaos in the TDVP equations does not correpond to phsyical properties of the system. Our result complement those of Ho et al. regarding the escape rate from the semiclassical periodic orbit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا