ترغب بنشر مسار تعليمي؟ اضغط هنا

Light force fluctuations in a strongly coupled atom-cavity system

110   0   0.0 ( 0 )
 نشر من قبل P. W. H. Pinkse
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Between mirrors, the density of electromagnetic modes differs from the one in free space. This changes the radiation properties of an atom as well as the light forces acting on an atom. It has profound consequences in the strong-coupling regime of cavity quantum electrodynamics. For a single atom trapped inside the cavity, we investigate the atom-cavity system by scanning the frequency of a probe laser for various atom-cavity detunings. The avoided crossing between atom and cavity resonance is visible in the transmission of the cavity. It is also visible in the loss rate of the atom from the intracavity dipole trap. On the normal-mode resonances, the dominant contribution to the loss rate originates from dipole-force fluctuations which are dramatically enhanced in the cavity. This conclusion is supported by Monte-Carlo simulations.

قيم البحث

اقرأ أيضاً

We experimentally investigate the spin dynamics of one and two neutral atoms strongly coupled to a high finesse optical cavity. We observe quantum jumps between hyperfine ground states of a single atom. The interaction-induced normal mode splitting o f the atom-cavity system is measured via the atomic excitation. Moreover, we observe evidence for conditional dynamics of two atoms simultaneously coupled to the cavity mode. Our results point towards the realization of measurement-induced entanglement schemes for neutral atoms in optical cavities.
The quantum dynamics of a strongly driven, strongly coupled single-atom-cavity system is studied by evaluating time-dependent second- and third-order correlations of the emitted photons. The coherent energy exchange, first, between the atom and the c avity mode, and second, between the atom-cavity system and the driving laser, is observed. Three-photon detections show an asymmetry in time, a consequence of the breakdown of detailed balance. The results are in good agreement with theory and are a first step towards the control of a quantum trajectory at larger driving strength.
100 - H. Mabuchi , H. M. Wiseman 1998
We investigate a novel type of conditional dynamic that occurs in the strongly-driven Jaynes-Cummings model with dissipation. Extending the work of Alsing and Carmichael [Quantum Opt. {bf 3}, 13 (1991)], we present a combined numerical and analytic s tudy of the Stochastic Master Equation that describes the systems conditional evolution when the cavity output is continuously observed via homodyne detection, but atomic spontaneous emission is not monitored at all. We find that quantum jumps of the atomic state are induced by its dynamical coupling to the optical field, in order retroactively to justify atypical fluctuations in ocurring in the homodyne photocurrent.
We experimentally demonstrate magnon Kerr effect in a cavity-magnon system, where magnons in a small yttrium iron garnet (YIG) sphere are strongly but dispersively coupled to the photons in a three-dimensional cavity. When the YIG sphere is pumped to generate considerable magnons, the Kerr effect yields a perceptible shift of the cavitys central frequency and more appreciable shifts of the magnon modes. We derive an analytical relation between the magnon frequency shift and the drive power for the uniformly magnetized YIG sphere and find that it agrees very well with the experimental results of the Kittel mode. Our study paves the way to explore nonlinear effects in the cavity-magnon system.
We compare the photoluminescence spectrum of an indium arsenide (InAs) quantum dot (QD) that is strongly coupled to a photonic crystal cavity under above band excitation (ABE) and quasi-resonant excitation (QRE). We show that off-resonant cavity feed ing, which manifests itself in a bare cavity emission peak at the strong coupling point, is suppressed by as much as 40% under QRE relative to ABE. We attribute this suppression to a reduced probability of QD charging because electrons and holes are created in pairs inside the QD. We investigate the pump power dependence of the cavity feeding and show that, below saturation, the ratio of the bare cavity emission to polariton emission for ABE is independent of pump power, while for QRE there is linear pump power dependence. These results suggest that the biexciton plays an important role in cavity feeding for QRE.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا