ترغب بنشر مسار تعليمي؟ اضغط هنا

Impulsive laser-induced alignment of OCS molecules at FERMI

257   0   0.0 ( 0 )
 نشر من قبل Michele Di Fraia
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate the experimental realization of impulsive alignment of carbonyl sulfide (OCS) molecules at the Low Density Matter Beamline (LDM) at the free-electron laser FERMI. OCS molecules in a molecular beam were impulsively aligned using 200 fs pulses from a near-infrared laser. The alignment was probed through time-delayed ionization above the sulphur 2p edge, resulting in multiple ionization via Auger decay and subsequent Coulomb explosion of the molecules. The ionic fragments were collected using a time-of-flight mass spectrometer and the analysis of ion-ion covariance maps confirmed the correlation between fragments after Coulomb explosion. The analysis of the CO+ and S+ channels allowed us to extract the rotational dynamics, which is in agreement with our theoretical description as well as with previous experiments. This result opens the way for a new class of experiments at LDM within the field of coherent control of molecules with the possibilities that a precisely synchronized optical-pump XUV-probe laser setup like FERMI can offer.



قيم البحث

اقرأ أيضاً

We make use of an inhomogeneous electrostatic dipole field to impart a quantum-state-dependent deflection to a pulsed beam of OCS molecules, and show that those molecules residing in the absolute ground state, $X ^1Sigma^+$, $ket{00^00}$, J=0, can be separated out by selecting the most deflected part of the molecular beam. Past the deflector, we irradiate the molecular beam by a linearly polarized pulsed nonresonant laser beam that impulsively aligns the OCS molecules. Their alignment, monitored via velocity-map imaging, is measured as a function of time, and the time dependence of the alignment is used to determine the quantum state composition of the beam. We find significant enhancements of the alignment (costhetasqtd $= 0.84$) and of state purity ($> 92$%) for a state-selected, deflected beam compared with an undeflected beam.
A strong inhomogeneous static electric field is used to spatially disperse a rotationally cold supersonic beam of 2,6-difluoroiodobenzene molecules according to their rotational quantum state. The molecules in the lowest lying rotational states are s elected and used as targets for 3-dimensional alignment and orientation. The alignment is induced in the adiabatic regime with an elliptically polarized, intense laser pulse and the orientation is induced by the combined action of the laser pulse and a weak static electric field. We show that the degree of 3-dimensional alignment and orientation is strongly enhanced when rotationally state-selected molecules, rather than molecules in the original molecular beam, are used as targets.
A strong inhomogeneous static electric field is used to spatially disperse a supersonic beam of polar molecules, according to their quantum state. We show that the molecules residing in the lowest-lying rotational states can be selected and used as t argets for further experiments. As an illustration, we demonstrate an unprecedented degree of laser-induced 1D alignment $(<cos^2theta_{2D}>=0.97)$ and strong orientation of state-selected iodobenzene molecules. This method should enable experiments on pure samples of polar molecules in their rotational ground state, offering new opportunities in molecular science.
We show that a 450 fs nonresonant, moderately intense, linearly polarized laser pulse can induce field-free molecular axis alignment of methyliodide molecules dissolved in a helium nanodroplet. Time-resolved measurements reveal rotational dynamics mu ch slower than that of isolated molecules and, surprisingly, complete absence of the sharp transient alignment recurrences characteristic of gas phase molecules. Our results presage a range of new opportunities for exploring both molecular dynamics in a dissipative environment and the properties of He nanodroplets.
Dimers of carbon disulfide (CS$_2$) molecules embedded in helium nanodroplets are aligned using a moderately intense, 160ps, non-resonant, circularly polarized laser pulse. It is shown that the intermolecular carbon-carbon (C-C) axis aligns along the axis perpendicular to the polarization plane of the alignment laser pulse. The degree of alignment, quantified by $langle cos^2(theta_text{2D}) rangle$, is determined from the emission directions of recoiling CS$_2$$^+$ fragment ions, created when an intense 40fs probe laser pulse doubly ionizes the dimers. Here, $theta_text{2D}$ is the projection of the angle between the C-C axis on the 2D ion detector and the normal to the polarization plane. $langle cos^2(theta_text{2D}) rangle$ is measured as a function of the alignment laser intensity and the results agree well with $langle cos^2(theta_text{2D}) rangle$ calculated for gas-phase CS$_2$ dimers with a rotational temperature of 0.4K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا