ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong coupling between single photons in semiconductor microcavities

379   0   0.0 ( 0 )
 نشر من قبل William Irvine
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the observability of strong coupling between single photons in semiconductor microcavities coupled by a chi(2) nonlinearity. We present two schemes and analyze the feasibility of their practical implementation in three systems: photonic crystal defects, micropillars and microdisks, fabricated out of GaAs. We show that if a weak coherent state is used to enhance the chi(2) interaction, the strong coupling regime between two modes at different frequencies occupied by a single photon is within reach of current technology. The unstimulated strong coupling of a single photon and a photon pair is very challenging and will require an improvement in mirocavity quality factors of 2-4 orders of magnitude to be observable.

قيم البحث

اقرأ أيضاً

We present a method to implement 3-dimensional polariton confinement with in-situ spectral tuning of the cavity mode. Our tunable microcavity is a hybrid system consisting of a bottom semiconductor distributed Bragg reflector (DBR) with a cavity cont aining quantum wells (QWs) grown on top and a dielectric concave DBR separated by a micrometer sized gap. Nanopositioners allow independent positioning of the two mirrors and the cavity mode energy can be tuned by controlling the distance between them. When close to resonance we observe a characteristic anticrossing between the cavity modes and the QW exciton demonstrating strong coupling. For the smallest radii of curvature concave mirrors of 5.6 $mu$m and 7.5 $mu$m real-space polariton imaging reveals submicron polariton confinement due to the hemispherical cavity geometry.
114 - Shinya Kato , Takao Aoki 2015
We demonstrate an all-fiber cavity QED system with a trapped single atom in the strong coupling regime. We use a nanofiber Fabry-Perot cavity, that is, an optical nanofiber sandwiched by two fiber-Bragg-grating mirrors. Measurements of the cavity tra nsmission spectrum with a single atom in a state-insensitive nanofiber trap clearly reveal the vacuum Rabi splitting.
Harnessing nonlinearities strong enough to allow two single photons to interact with one another is not only a fascinating challenge but is central to numerous advanced applications in quantum information science. Currently, all known approaches are extremely challenging although a few have led to experimental realisations with attenuated classical laser light. This has included cross-phase modulation with weak classical light in atomic ensembles and optical fibres, converting incident laser light into a non-classical stream of photon or Rydberg blockades as well as all-optical switches with attenuated classical light in various atomic systems. Here we report the observation of a nonlinear parametric interaction between two true single photons. Single photons are initially generated by heralding one photon from each of two independent spontaneous parametric downconversion sources. The two heralded single photons are subsequently combined in a nonlinear waveguide where they are converted into a single photon with a higher energy. Our approach highlights the potential for quantum nonlinear optics with integrated devices, and as the photons are at telecom wavelengths, it is well adapted to applications in quantum communication.
248 - Ofer Kfir 2019
This work sets a road-map towards an experimental realization of strong coupling between free-electrons and photons, and analytically explores entanglement phenomena that emerge in this regime. The proposed model unifies the strong-coupling predictio ns with known electron-photon interactions. Additionally, this work predicts a non-Columbic entanglement between freely propagating electrons. Since strong-coupling can map entanglements between photon pairs onto photon-electron pairs, it may harness electron beams for quantum communication, thus far exclusive to photons.
We give a theoretical description of a coherently driven opto-mechanical system with a single added photon. The photon source is modeled as a cavity which initially contains one photon and which is irreversibly coupled to the opto-mechanical system. We show that the probability for the additional photon to be emitted by the opto-mechanical cavity will exhibit oscillations under a Lorentzian envelope, when the driven interaction with the mechanical resonator is strong enough. Our scheme provides a feasible route towards quantum state transfer between optical photons and micromechanical resonators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا