ﻻ يوجد ملخص باللغة العربية
This work sets a road-map towards an experimental realization of strong coupling between free-electrons and photons, and analytically explores entanglement phenomena that emerge in this regime. The proposed model unifies the strong-coupling predictions with known electron-photon interactions. Additionally, this work predicts a non-Columbic entanglement between freely propagating electrons. Since strong-coupling can map entanglements between photon pairs onto photon-electron pairs, it may harness electron beams for quantum communication, thus far exclusive to photons.
Demonstrating and exploiting the quantum nature of larger, more macroscopic mechanical objects would help us to directly investigate the limitations of quantum-based measurements and quantum information protocols, as well as test long standing questi
We study the cavity mode frequencies of a Fabry-Perot cavity containing two vibrating dielectric membranes. We derive the equations for the mode resonances and provide approximate analytical solutions for them as a function of the membrane positions,
In most theoretical descriptions of collective strong coupling of organic molecules to a cavity mode, the molecules are modeled as simple two-level systems. This picture fails to describe the rich structure provided by their internal rovibrational (n
Hybrid quantum systems based on spin ensembles coupled to superconducting microwave cavities are promising candidates for robust experiments in cavity quantum electrodynamics (QED) and for future technologies employing quantum mechanical effects. Cur
We derive analytical formulas for the forward emission and side emission spectra of cavity-modified single-photon sources, as well as the corresponding normal-mode oscillations in the cavity quantum electrodynamics (QED) strong-coupling regime. We in