ترغب بنشر مسار تعليمي؟ اضغط هنا

Interferometry with Atoms

233   0   0.0 ( 0 )
 نشر من قبل Joerg Schmiedmayer
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optics and interferometry with matter waves is the art of coherently manipulating the translational motion of particles like neutrons, atoms and molecules. Coherent atom optics is an extension of techniques that were developed for manipulating emph{internal} quantum states. Applying these ideas to translational motion required the development of techniques to localize atoms and transfer population coherently between distant localities. In this view position and momentum are (continuouse) quantum mechanical degree of freedom analogous to discrete internal quantum states. In our contribution we start with an introduction into matter-wave optics in section 1, discuss coherent atom optics and atom interferometry techniques for molecular beams in section 2 and for trapped atoms in section 3. In section 4 we then describe tools and experiments that allow us to probe the evolution of quantum states of many-body systems by atom interference.



قيم البحث

اقرأ أيضاً

Quantum interferometers are generally set so that phase differences between paths in coordinate space combine constructive or destructively. Indeed, the interfering paths can also meet in momentum space leading to momentum-space fringes. We propose a nd analyze a method to produce interference in momentum space by phase-imprinting part of a trapped atomic cloud with a detuned laser. For one-particle wave functions analytical expressions are found for the fringe width and shift versus the phase imprinted. The effects of unsharpness or displacement of the phase jump are also studied, as well as many-body effects to determine the potential applicability of momentum-space interferometry.
We theoretically analyze a Mach-Zehnder interferometer with trapped condensates, and find that it is surprisingly stable against the nonlinearity induced by inter-particle interactions. The phase sensitivity, which we study for number squeezed input states, can overcome the shot noise limit and be increased up to the Heisenberg limit provided that a Bayesian or Maximum-Likelihood phase estimation strategy is used. We finally demonstrate robustness of the Mach-Zehnder interferometer in presence of interactions against condensate oscillations and a realistic atom counting error.
Quantum mechanics sets fundamental limits on how fast quantum states can be transformed in time. Two well-known quantum speed limits are the Mandelstam-Tamm (MT) and the Margolus-Levitin (ML) bounds, which relate the maximum speed of evolution to the systems energy uncertainty and mean energy, respectively. Here, we test concurrently both limits in a multi-level system by following the motion of a single atom in an optical trap using fast matter wave interferometry. Our data reveal two different regimes: one where the MT limit constrains the evolution at all times, and a second where a crossover to the ML limit is manifested at longer times. We take a geometric approach to quantify the deviation from the speed limit, measuring how much the matter waves quantum evolution deviates from the geodesic path in the Hilbert space of the multi-level system. Our results, establishing quantum speed limits beyond the simple two-level system, are important to understand the ultimate performance of quantum computing devices and related advanced quantum technologies.
The experimental realisation of large scale many-body systems has seen immense progress in recent years, rendering full tomography tools for state identification inefficient, especially for continuous systems. In order to work with these emerging phy sical platforms, new technologies for state identification are required. In this work, we present first steps towards efficient experimental quantum field tomography. We employ our procedure to capture ultracold atomic systems using atom chips, a setup that allows for the quantum simulation of static and dynamical properties of interacting quantum fields. Our procedure is based on cMPS, the continuous analogues of matrix product states (MPS), ubiquitous in condensed-matter theory. These states naturally incorporate the locality present in realistic physical settings and are thus prime candidates for describing the physics of locally interacting quantum fields. The reconstruction procedure is based on two- and four-point correlation functions, from which we predict higher-order correlation functions, thus validating our reconstruction for the experimental situation at hand. We apply our procedure to quenched prethermalisation experiments for quasi-condensates. In this setting, we can use the quality of our tomographic reconstruction as a probe for the non-equilibrium nature of the involved physical processes. We discuss the potential of such methods in the context of partial verification of analogue quantum simulators.
Active interferometers are designed to enhance phase sensitivity beyond the standard quantum limit by generating entanglement inside the interferometer. An atomic version of such a device can be constructed by means of a spinor Bose-Einstein condensa te with an $F=1$ groundstate manifold in which spin-changing collisions create entangled pairs of $m=pm1$ atoms. We use Bethe Ansatz techniques to find exact eigenstates and eigenvalues of the Hamiltonian that models such spin-changing collisions. Using these results, we express the interferometers phase sensitivity, Fisher information, and Hellinger distance in terms of the Bethe rapidities. By evaluating these expressions we study scaling properties and the interferometers performance under the full Hamiltonian that models the spin-changing collisions, i.e., without the idealising approximations of earlier works that force the model into the framework of SU(1,1) interferometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا