ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of quantum devices

111   0   0.0 ( 0 )
 نشر من قبل Hradil Zdenek
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Maximum-likelihood estimation is applied to identification of an unknown quantum mechanical process represented by a ``black box. In contrast to linear reconstruction schemes the proposed approach always yields physically sensible results. Its feasibility is demonstrated using the Monte Carlo simulations for the two-level system (single qubit).

قيم البحث

اقرأ أيضاً

Quantum network coding has been proposed to improve resource utilization to support distributed computation but has not yet been put in to practice. We investigate a particular implementation of quantum network coding using measurement-based quantum computation on IBM Q processors. We compare the performance of quantum network coding with entanglement swapping and entanglement distribution via linear cluster states. These protocols outperform quantum network coding in terms of the final Bell pair fidelities but are unsuitable for optimal resource utilization in complex networks with contention present. We demonstrate the suitability of noisy intermediate-scale quantum (NISQ) devices such as IBM Q for the study of quantum networks. We also identify the factors that limit the performance of quantum network coding on these processors and provide estimates or error rates required to boost the final Bell pair fidelities to a point where they can be used for generation of genuinely random cryptographic keys among other useful tasks. Surprisingly, the required error rates are only around a factor of 2 smaller than the current status and we expect they will be achieved in the near future.
Device-independent quantum key distribution aims to provide key distribution schemes whose security is based on the laws of quantum physics but which does not require any assumptions about the internal working of the quantum devices used in the proto col. This strong form of security, unattainable with standard schemes, is possible only when using correlations that violate a Bell inequality. We provide a general security proof valid for a large class of device-independent quantum key distribution protocols in a model in which the raw key elements are generated by causally independent measurement processes. The validity of this independence condition may be justifiable in a variety of implementations and is necessarily satisfied in a physical realization where the raw key is generated by N separate pairs of devices. Our work shows that device-independent quantum key distribution is possible with key rates comparable to those of standard schemes.
We introduce a Bayesian method for the estimation of single qubit errors in quantum devices, and use it to characterize these errors on two 27-qubit superconducting qubit devices. We selfconsistently estimate up to seven parameters of each qubits sta te preparation, readout, and gate errors, analyze the stability of these errors as a function of time, and demonstrate easily implemented approaches for mitigating different errors before a quantum computation experiment. On the investigated devices we find non-negligible qubit reset errors that cannot be parametrized as a diagonal mixed state, but manifest as a coherent phase of a superposition with a small contribution from the qubits excited state, which we are able to mitigate by applying pre-rotations on the initialized qubits. Our results demonstrate that Bayesian estimation can resolve small parameters - including those pertaining to quantum gate errors - with a high relative accuracy, at a lower measurement cost as compared with standard characterization approaches.
Superradiance is the archetypical collective phenomenon where radiation is amplified by the coherence of emitters. It plays a prominent role in optics, where it enables the design of lasers with substantially reduced linewidths, quantum mechanics, an d is even used to explain cosmological observations like Hawking radiation from black holes. Hybridization of distinct quantum systems allows to engineer new quantum metamaterials pooling the advantages of the individual systems. Superconducting circuits coupled to spin ensembles are promising future building blocks of integrated quantum devices and superradiance will play a prominent role. As such it is important to study its fundamental properties in hybrid devices. Experiments in the strong coupling regime have shown oscillatory behaviour in these systems but a clear signature of Dicke superradiance has been missing so far. Here we explore superradiance in a hybrid system composed of a superconducting resonator in the fast cavity limit inductively coupled to an inhomogeneously broadened ensemble of nitrogen-vacancy (NV) centres. We observe a superradiant pulse being emitted a trillion of times faster than the decay for an individual NV centre. This is further confirmed by the non-linear scaling of the emitted radiation intensity with respect to the ensemble size. Our work provides the foundation for future quantum technologies including solid state superradiant masers.
Quantum computers are on the brink of surpassing the capabilities of even the most powerful classical computers. This naturally raises the question of how one can trust the results of a quantum computer when they cannot be compared to classical simul ation. Here we present a verification technique that exploits the principles of measurement-based quantum computation to link quantum circuits of different input size, depth, and structure. Our approach enables consistency checks of quantum computations within a device, as well as between independent devices. We showcase our protocol by applying it to five state-of-the-art quantum processors, based on four distinct physical architectures: nuclear magnetic resonance, superconducting circuits, trapped ions, and photonics, with up to 6 qubits and 200 distinct circuits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا