ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-verification of independent quantum devices

92   0   0.0 ( 0 )
 نشر من قبل Martin Ringbauer PhD
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum computers are on the brink of surpassing the capabilities of even the most powerful classical computers. This naturally raises the question of how one can trust the results of a quantum computer when they cannot be compared to classical simulation. Here we present a verification technique that exploits the principles of measurement-based quantum computation to link quantum circuits of different input size, depth, and structure. Our approach enables consistency checks of quantum computations within a device, as well as between independent devices. We showcase our protocol by applying it to five state-of-the-art quantum processors, based on four distinct physical architectures: nuclear magnetic resonance, superconducting circuits, trapped ions, and photonics, with up to 6 qubits and 200 distinct circuits.



قيم البحث

اقرأ أيضاً

We introduce a method for the verification of nonclassical light which is independent of the complex interaction between the generated light and the material of the detectors. This is accomplished by means of a multiplexing arrangement. Its theoretic al description yields that the coincidence statistics of this measurement layout is a mixture of multinomial distributions for any classical light field and any type of detector. This allows us to formulate bounds on the statistical properties of classical states. We apply our directly accessible method to heralded multiphoton states which are detected with a single multiplexing step only and two detectors, which are in our work superconducting transition-edge sensors. The nonclassicality of the generated light is verified and characterized through the violation of the classical bounds without the need for characterizing the used detectors.
Continuous-variable quantum information, encoded into infinite-dimensional quantum systems, is a promising platform for the realization of many quantum information protocols, including quantum computation, quantum metrology, quantum cryptography, and quantum communication. To successfully demonstrate these protocols, an essential step is the certification of multimode continuous-variable quantum states and quantum devices. This problem is well studied under the assumption that multiple uses of the same device result into identical and independently distributed (i.i.d.) operations. However, in realistic scenarios, identical and independent state preparation and calls to the quantum devices cannot be generally guaranteed. Important instances include adversarial scenarios and instances of time-dependent and correlated noise. In this paper, we propose the first set of reliable protocols for verifying multimode continuous-variable entangled states and devices in these non-i.i.d scenarios. Although not fully universal, these protocols are applicable to Gaussian quantum states, non-Gaussian hypergraph states, as well as amplification, attenuation, and purification of noisy coherent states.
Bell nonlocality between distant quantum systems---i.e., joint correlations which violate a Bell inequality---can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure p rotocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell nonlocality requires high detection efficiencies, and is not robust to the typical transmission losses that occur in long distance applications. In contrast, quantum steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. We present device-independent steering protocols that remove this need for trust, even when Bell nonlocality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality.
In this paper we report an experiment that verifies an atomic-ensemble quantum memory via a measurement-device-independent scheme. A single photon generated via Rydberg blockade in one atomic ensemble is stored in another atomic ensemble via electrom agnetically induced transparency. After storage for a long duration, this photon is retrieved and interfered with a second photon to perform joint Bell-state measurement (BSM). Quantum state for each photon is chosen based on a quantum random number generator respectively in each run. By evaluating correlations between the random states and BSM results, we certify that our memory is genuinely entanglement-preserving.
Device-independent quantum key distribution aims to provide key distribution schemes whose security is based on the laws of quantum physics but which does not require any assumptions about the internal working of the quantum devices used in the proto col. This strong form of security, unattainable with standard schemes, is possible only when using correlations that violate a Bell inequality. We provide a general security proof valid for a large class of device-independent quantum key distribution protocols in a model in which the raw key elements are generated by causally independent measurement processes. The validity of this independence condition may be justifiable in a variety of implementations and is necessarily satisfied in a physical realization where the raw key is generated by N separate pairs of devices. Our work shows that device-independent quantum key distribution is possible with key rates comparable to those of standard schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا