ترغب بنشر مسار تعليمي؟ اضغط هنا

Superradiant Hybrid Quantum Devices

82   0   0.0 ( 0 )
 نشر من قبل Andreas Angerer
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superradiance is the archetypical collective phenomenon where radiation is amplified by the coherence of emitters. It plays a prominent role in optics, where it enables the design of lasers with substantially reduced linewidths, quantum mechanics, and is even used to explain cosmological observations like Hawking radiation from black holes. Hybridization of distinct quantum systems allows to engineer new quantum metamaterials pooling the advantages of the individual systems. Superconducting circuits coupled to spin ensembles are promising future building blocks of integrated quantum devices and superradiance will play a prominent role. As such it is important to study its fundamental properties in hybrid devices. Experiments in the strong coupling regime have shown oscillatory behaviour in these systems but a clear signature of Dicke superradiance has been missing so far. Here we explore superradiance in a hybrid system composed of a superconducting resonator in the fast cavity limit inductively coupled to an inhomogeneously broadened ensemble of nitrogen-vacancy (NV) centres. We observe a superradiant pulse being emitted a trillion of times faster than the decay for an individual NV centre. This is further confirmed by the non-linear scaling of the emitted radiation intensity with respect to the ensemble size. Our work provides the foundation for future quantum technologies including solid state superradiant masers.



قيم البحث

اقرأ أيضاً

Exceptional points (EPs) are exotic degeneracies of non-Hermitian systems, where the eigenvalues and the corresponding eigenvectors simultaneously coalesce in parameter space, and these degeneracies are sensitive to tiny perturbations on the system. Here we report an experimental observation of the EP in a hybrid quantum system consisting of dense nitrogen (P1) centers in diamond coupled to a coplanar-waveguide resonator. These P1 centers can be divided into three subensembles of spins, and cross relaxation occurs among them. As a new method to demonstrate this EP, we pump a given spin subensemble with a drive field to tune the magnon-photon coupling in a wide range. We observe the EP in the middle spin subensemble coupled to the resonator mode, irrespective of which spin subensemble is actually driven. This robustness of the EP against pumping reveals the key role of the cross relaxation in P1 centers. It offers a novel way to convincingly prove the existence of the cross-relaxation effect via the EP.
Spin ensemble based hybrid quantum systems suffer from a significant degree of decoherence resulting from the inhomogeneous broadening of the spin transition frequencies in the ensemble. We demonstrate that this strongly restrictive drawback can be o vercome simply by burning two narrow spectral holes in the spin spectral density at judiciously chosen frequencies. Using this procedure we find an increase of the coherence time by more than an order of magnitude as compared to the case without hole burning. Our findings pave the way for the practical use of these hybrid quantum systems for the processing of quantum information.
The control of the quantum transport is an issue of current interest for the construction of new devices. In this work, we investigate this possibility in the realm of quantum graphs. The study allows the identification of two distinct periodic quant um effects which are related to quantum complexity, one being the identification of transport inefficiency, and the other the presence of peaks of full transmission inside regions of suppression of transport in some elementary arrangements of graphs. Motivated by the power of quantum graphs, we elaborate on the construction of simple devices, based on microwave and optical fibers networks, and also on quantum dots, nanowires and nanorings. The elementary devices can be used to construct composed structures with important quantum properties, which may be used to manipulate the quantum transport.
Magnetically coupled hybrid quantum systems enable robust quantum state control through Landau-Zener transitions. Here, we show that an ultracold atomic sample coupled to a nanomechanical resonator via oscillating magnetic fields can be used to cool the resonators mechanical motion, to measure the mechanical temperature, and to enable entanglement of these mesoscopic objects. We calculate the expected coupling for both permanent-magnet and current-conducting nanostring resonators and describe how this hybridization is attainable using recently developed fabrication techniques, including SiN nanostrings and atom chips.
Engineered quantum systems enabling novel capabilities for communication, computation, and sensing have blossomed in the last decade. Architectures benefiting from combining distinct and complementary physical quantum systems have emerged as promisin g platforms for developing quantum technologies. A new class of hybrid quantum systems based on collective spin excitations in ferromagnetic materials has led to the diverse set of experimental platforms which are outlined in this review article. The coherent interaction between microwave cavity modes and collective spin-wave modes is presented as the backbone of the development of more complex hybrid quantum systems. Indeed, quanta of excitation of the spin-wave modes, called magnons, can also interact coherently with optical photons, phonons, and superconducting qubits in the fields of cavity optomagnonics, cavity magnomechanics, and quantum magnonics, respectively. Notably, quantum magnonics provides a promising platform for performing quantum optics experiments in magnetically-ordered solid-state systems. Applications of hybrid quantum systems based on magnonics for quantum information processing and quantum sensing are also outlined briefly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا