ﻻ يوجد ملخص باللغة العربية
Prediction and control of cancer invasion is a vital problem in medical science. This paper proposes a modern geometric Ricci-flow and entropy based model for control of avascular multicellular tumor spheroid growth and decay. As a tumor growth/decay control tool, a monoclonal antibody therapy is proposed. Keywords: avascular tumor growth and decay, multicellular tumor spheroid, Ricci flow and entropy, nonlinear heat equation, monoclonal antibody cancer therapy
We propose a strange-attractor model of tumor growth and metastasis. It is a 4-dimensional spatio-temporal cancer model with strong nonlinear couplings. Even the same type of tumor is different in every patient both in size and appearance, as well as
The comprehension of tumor growth is a intriguing subject for scientists. New researches has been constantly required to better understand the complexity of this phenomenon. In this paper, we pursue a physical description that account for some experi
Tumor growth has long been a target of investigation within the context of mathematical and computer modelling. The objective of this study is to propose and analyze a two-dimensional probabilistic cellular automata model to describe avascular solid
In this work, we study the in-vitro dynamics of the most malignant form of the primary brain tumor: Glioblastoma Multiforme. Typically, the growing tumor consists of the inner dense proliferating zone and the outer less dense invasive region. Experim
We study a simplified stochastic model for the vascularization of a growing tumor, incorporating the formation of new blood vessels at the tumor periphery as well as their regression in the tumor center. The resulting morphology of the tumor vasculat