ﻻ يوجد ملخص باللغة العربية
In this paper we analyze the spinning motion of the hovering magnetic top. We have observed that its motion looks different from that of a classical top. A classical top rotates about its own axis which precesses around a vertical fixed external axis. The hovering magnetic top, on the other hand, has its axis slightly tilted and moves rigidly as a whole about the vertical axis. We call this motion synchronous, because in a stroboscopic experiment we see that a point at the rim of the top moves synchronously with the top axis. We show that the synchronous motion may be attributed to a small deviation of the magnetic moment from the symmetry axis of the top. We calculate the minimum angular velocity required for stability in terms of the moments of inertia and magnetic field and show that it is different from that of a classical top. We also give experimental results that were taken with a top whose moment of inertia can be changed. These results show very good agreement with our calculations.
We analyze the stability of two charged conducting spheres orbiting each other. Due to charge polarization, the electrostatic force between the two spheres deviates significantly from $1/r^2$ as they come close to each other. As a consequence, there
The existence of an internal frequency associated to any elementary particle conjectured by de Broglie is compared with a classical description of the electron, where this internal structure corresponds to the motion of the centre of charge around th
For several configurations of charges in the presence of conductors, the method of images permits us to obtain some observables associated with such a configuration by replacing the conductors with some image charges. However, simple inspection shows
The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wires magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only th
In the first sections of this article, we discuss two variations on Maxwells equations that have been introduced in earlier work--a class of nonlinear Maxwell theories with well-defined Galilean limits (and correspondingly generalized Yang-Mills equa