ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrostatic internal energy using the method of images

265   0   0.0 ( 0 )
 نشر من قبل William Javier Herrera
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For several configurations of charges in the presence of conductors, the method of images permits us to obtain some observables associated with such a configuration by replacing the conductors with some image charges. However, simple inspection shows that the potential energy associated with both systems does not coincide. Nevertheless, it can be shown that for a system of a grounded or neutral conductor and a distribution of charges outside, the external potential energy associated with the real charge distribution embedded in the field generated by the set of image charges is twice the value of the internal potential energy associated with the original system. This assertion is valid for any size and shape of the conductor, and regardless of the configuration of images required. In addition, even in the case in which the conductor is not grounded nor neutral, it is still possible to calculate the internal potential energy of the original configuration through the method of images. These results show that the method of images could also be useful for calculations of the internal potential energy of the original system.



قيم البحث

اقرأ أيضاً

We analyze the stability of two charged conducting spheres orbiting each other. Due to charge polarization, the electrostatic force between the two spheres deviates significantly from $1/r^2$ as they come close to each other. As a consequence, there exists a critical angular momentum, $L_c$, with a corresponding critical radius $r_c$. For $L > L_c$ two circular orbits are possible: one at $r > r_c$ that is stable and the other at $r < r_c$ that is unstable. This critical behavior is analyzed as a function of the charge and the size ratios of the two spheres.
160 - Martin Rivas 2012
The existence of an internal frequency associated to any elementary particle conjectured by de Broglie is compared with a classical description of the electron, where this internal structure corresponds to the motion of the centre of charge around th e centre of mass of the particle. This internal motion has a frequency twice de Broglies frequency, which corresponds to the frequency found by Dirac when analysing the electron structure. To get evidence of this internal electron clock a kind of experiment as the one performed by Gouanere et al. cite{Gouanere} will show a discrete set of momenta at which a resonant scattering effect, appears. The resonant momenta of the electron beam are given by $p_k=161.748/k$ MeV$/c$, $k=1,2,3,...$, where only, the corresponding to $k=2$, was within the range of Gouanere et al. experiment. The extension of the experiment to other values of $p_k$, would show the existence of this phenomenon.
In this paper we analyze the spinning motion of the hovering magnetic top. We have observed that its motion looks different from that of a classical top. A classical top rotates about its own axis which precesses around a vertical fixed external axis . The hovering magnetic top, on the other hand, has its axis slightly tilted and moves rigidly as a whole about the vertical axis. We call this motion synchronous, because in a stroboscopic experiment we see that a point at the rim of the top moves synchronously with the top axis. We show that the synchronous motion may be attributed to a small deviation of the magnetic moment from the symmetry axis of the top. We calculate the minimum angular velocity required for stability in terms of the moments of inertia and magnetic field and show that it is different from that of a classical top. We also give experimental results that were taken with a top whose moment of inertia can be changed. These results show very good agreement with our calculations.
The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wires magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only th e particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher order post-adiabatic corrections make the orbits precess, but recent analysis of this `vector Kepler problem has shown that the effective Hamiltonian incorporating a post-adiabatic scalar potential (`geometric electromagnetism) fails to predict the precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the post-adiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a $1/r^3$ singularity which is an artifact of the adiabatic approximation.
We analyze the transformation properties of Faraday law in an empty space and its relationship with Maxwell equations. In our analysis we express the Faraday law via the four-potential of electromagnetic field and the field of four-velocity, defined on a circuit under its deforming motion. The obtained equations show one more facet of the physical meaning of electromagnetic potentials, where the motional and transformer parts of the flux rule are incorporated into a common phenomenon, reflecting the dependence of four-potential on spatial and time coordinates, correspondingly. It has been explicitly shown that for filamentary closed deforming circuit the flux rule is Lorentz-invariant. At the same time, analyzing a transformation of e.m.f., we revealed a controversy: due to causal requirements, the e.m.f. should be the value of fixed sign, whereas the Lorentz invariance of flux rule admits the cases, where the e.m.f. might change its sign for different inertial observers. Possible resolutions of this controversy are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا