ﻻ يوجد ملخص باللغة العربية
The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wires magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher order post-adiabatic corrections make the orbits precess, but recent analysis of this `vector Kepler problem has shown that the effective Hamiltonian incorporating a post-adiabatic scalar potential (`geometric electromagnetism) fails to predict the precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the post-adiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a $1/r^3$ singularity which is an artifact of the adiabatic approximation.
Using geometric algebra and calculus to express the laws of electromagnetism we are able to present magnitudes and relations in a gradual way, escalating the number of dimensions. In the one-dimensional case, charge and current densities, the electri
A unified account, from a pedagogical perspective, is given of the longitudinal and transverse projective delta functions proposed by Belinfante and of their relation to the Helmholtz theorem for the decomposition of a three-vector field into its lon
The hodograph of the Kepler-Coulomb problem, that is, the path traced by its velocity vector, is shown to be a circle and then it is used to investigate other properties of the motion. We obtain the configuration space orbits of the problem starting
We propose a theoretical framework that captures the geometric vector potential emerging from the non-adiabatic spin dynamics of itinerant carriers subject to arbitrary magnetic textures. Our approach results in a series of constraints on the geometr
Since quantum computers are known to break the vast majority of currently-used cryptographic protocols, a variety of new protocols are being developed that are conjectured, but not proven to be safe against quantum attacks. Among the most promising i