ﻻ يوجد ملخص باللغة العربية
We have performed quantum molecular dynamics simulations for dense helium to study the nonmetal-to-metal transition at high pressures. We present new results for the equation of state and the Hugoniot curve in the warm dense matter region. The optical conductivity is calculated via the Kubo-Greenwood formula from which the dc conductivity is derived. The nonmetal-to-metal transition is identified at about 1 g/ccm. We compare with experimental results as well as with other theoretical approaches, especially with predictions of chemical models.
A new modular code called BOUT++ is presented, which simulates 3D fluid equations in curvilinear coordinates. Although aimed at simulating Edge Localised Modes (ELMs) in tokamak X-point geometry, the code is able to simulate a wide range of fluid mod
We used molecular dynamics simulations to predict the steady state crystal shape of naphthalene grown from ethanol solution. The simulations were performed at constant supersaturation by utilizing a recently proposed algorithm [Perego et al., J. Chem
Wave packet molecular dynamics (WPMD) has recently received a lot of attention as a computationally fast tool to study dynamical processes in warm dense matter beyond the Born-Oppenheimer approximation. These techniques, typically, employ many approx
Molecular Dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, which range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects,
Extraction of non-equilibrium hot carriers generated by plasmon decay in metallic nanostructures is an increasingly exciting prospect for utilizing plasmonic losses, but the search for optimum plasmonic materials with long-lived carriers is ongoing.