ترغب بنشر مسار تعليمي؟ اضغط هنا

BOUT++: a framework for parallel plasma fluid simulations

165   0   0.0 ( 0 )
 نشر من قبل Benjamin Dudson
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. D. Dudson




اسأل ChatGPT حول البحث

A new modular code called BOUT++ is presented, which simulates 3D fluid equations in curvilinear coordinates. Although aimed at simulating Edge Localised Modes (ELMs) in tokamak X-point geometry, the code is able to simulate a wide range of fluid models (magnetised and unmagnetised) involving an arbitrary number of scalar and vector fields, in a wide range of geometries. Time evolution is fully implicit, and 3rd-order WENO schemes are implemented. Benchmarks are presented for linear and non-linear problems (the Orszag-Tang vortex) showing good agreement. Performance of the code is tested by scaling with problem size and processor number, showing efficient scaling to thousands of processors. Linear initial-value simulations of ELMs using reduced ideal MHD are presented, and the results compared to the ELITE linear MHD eigenvalue code. The resulting mode-structures and growth-rate are found to be in good agreement (BOUT++ = 0.245, ELITE = 0.239). To our knowledge, this is the first time dissipationless, initial-value simulations of ELMs have been successfully demonstrated.



قيم البحث

اقرأ أيضاً

An overview of the algorithm and a sampling of plasma applications of the implicit, adaptive high order finite (spectral) element modeling framework, HiFi, is presented. The distinguishing capabilities of the HiFi code include adaptive spectral eleme nt spatial representation with flexible geometry, highly parallelizable implicit time advance, and general flux-source form of the partial differential equations and boundary conditions that can be implemented in its framework. Early algorithm development and extensive verification studies of the two-dimensional version of the code, known as SEL, have been previously described [A.H. Glasser & X.Z. Tang, Comp. Phys. Comm., 164 (2004); V.S. Lukin, Ph.D. thesis, Princeton University (2008)]. Here, substantial algorithmic improvements and extensions are presented together with examples of two- and three- dimensional applications of the HiFi framework. These include a Cartesian two-dimensional incompressible magnetohydrodynamic simulation of low dissipation magnetic reconnection in a large system, a two-dimensional axisymmetric simulation of self-similar compression of a magnetic plasma confinement configuration, and a three-dimensional Hall MHD simulation of spheromak tilting and relaxation. Some planned efforts to further improve and expand the capabilities of the HiFi modeling framework are discussed.
Non-local closures allow kinetic effects on parallel transport to be included in fluid simulations. This is especially important in the scrape-off layer, but to be useful there the non-local model requires consistent kinetic boundary conditions at th e sheath. A non-local closure scheme based on solution of a kinetic equation using a diagonalized moment expansion has been previously reported. We derive a method for imposing kinetic boundary conditions in this scheme and discuss their implementation in BOUT++. To make it feasible to implement the boundary conditions in the code, we are lead to transform the non-local model to a different moment basis, better adapted to describe parallel dynamics. The new basis has the additional benefit of enabling substantial optimization of the closure calculation, resulting in an O(10) speedup of the non-local code.
82 - L. Gargate 2006
A massively parallel simulation code, called textit{dHybrid}, has been developed to perform global scale studies of space plasma interactions. This code is based on an explicit hybrid model; the numerical stability and parallel scalability of the cod e are studied. A stabilization method for the explicit algorithm, for regions of near zero density, is proposed. Three-dimensional hybrid simulations of the interaction of the solar wind with unmagnetized artificial objects are presented, with a focus on the expansion of a plasma cloud into the solar wind, which creates a diamagnetic cavity and drives the Interplanetary Magnetic Field out of the expansion region. The dynamics of this system can provide insights into other similar scenarios, such as the interaction of the solar wind with unmagnetized planets.
We have performed quantum molecular dynamics simulations for dense helium to study the nonmetal-to-metal transition at high pressures. We present new results for the equation of state and the Hugoniot curve in the warm dense matter region. The optica l conductivity is calculated via the Kubo-Greenwood formula from which the dc conductivity is derived. The nonmetal-to-metal transition is identified at about 1 g/ccm. We compare with experimental results as well as with other theoretical approaches, especially with predictions of chemical models.
Comparisons are presented between a hybrid Vlasov-Maxwell (HVM) simulation of turbulence in a collisionless plasma and fluid reductions. These include Hall-magnetohydrodynamics (HMHD) and Landau fluid (LF) or FLR-Landau fluid (FLR-LF) models that ret ain pressure anisotropy and low-frequency kinetic effects such as Landau damping and, for the last model, finite Larmor radius (FLR) corrections. The problem is considered in two space dimensions, when initial conditions involve moderate-amplitude perturbations of a homogeneous equilibrium plasma subject to an out-of-plane magnetic field. LF turns out to provide an accurate description of the velocity field up to the ion Larmor radius scale, and even to smaller scales for the magnetic field. Compressibility nevertheless appears significantly larger at the sub-ion scales in the fluid models than in the HVM simulation. High frequency kinetic effects, such as cyclotron resonances, not retained by fluid descriptions, could be at the origin of this discrepancy. A significant temperature anisotropy is generated, with a bias towards the perpendicular component, the more intense fluctuations being rather spread out and located in a broad vicinity of current sheets. Non-gyrotropic pressure tensor components are measured and their fluctuations are shown to reach a significant fraction of the total pressure fluctuation, with intense regions closely correlated with current sheets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا