ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular Dynamics Simulations of Solutions at Constant Chemical Potential

217   0   0.0 ( 0 )
 نشر من قبل Claudio Perego
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Molecular Dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, which range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, which influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a Grand-Canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work we propose the Constant Chemical Potential Molecular Dynamics (C$mu$MD) method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the C$mu$MD method to the paradigmatic case of urea crystallization in aqueous solution. As a result, we have been able to study crystal growth dynamics under constant supersaturation conditions, and to extract growth rates and free-energy barriers.



قيم البحث

اقرأ أيضاً

Efficient computational methods that are capable of supporting experimental measures obtained at constant values of pH and redox potential are important tools as they serve to, among other things, provide additional atomic level information that cann ot be obtained experimentally. Replica Exchange is an enhanced sampling technique that allows converged results to be obtained faster in comparison to regular molecular dynamics simulations. In this work we report the implementation, also available with GPU-accelerated code, of pH and redox potential (E) as options for multidimensional REMD simulations in AMBER. Previous publications have only reported multidimensional REMD simulations with the temperature and Hamiltonian dimensions. In this work results are shown for N-acetylmicroperoxidase-8 (NAcMP8) axially connected to a histidine peptide. This is a small system that contains only a single heme group. We compare results from E,pH-REMD, E,T-REMD and E,T,pH-REMD to one dimensional REMD simulations and to simulations without REMD. We show that 2D-REMD simulations improve sampling convergence in comparison to 1D-REMD simulations, and that 3D-REMD further improves convergence in comparison to 2D-REMD simulations. Also, our computational benchmarks show that our multidimensional REMD calculations have a small and bearable computational performance, essentially the same as one dimensional REMD. However, in multidimensional REMD a significantly higher number of replicas is required as the number of replicas scales geometrically with the number of dimensions, which requires additional computational resources. In addition to the pH dependence on standard redox potential values and the redox potential dependence on pKa values,we also investigate the influence of the temperature in our results. We observe an agreement between our computational results and theoretical predictions.
Accurate prediction of a gas solubility in a liquid is crucial in many areas of chemistry, and a detailed understanding of the molecular mechanism of the gas solvation continues to be an active area of research. Here, we extend the idea of constant c hemical potential molecular dynamics (C{mu}MD) approach to the calculation of the gas solubility in the liquid under constant gas chemical potential conditions. As a representative example, we utilize this method to calculate the isothermal solubility of carbon dioxide in water. Additionally, we provide microscopic insight into the mechanism of solvation that preferentially occurs in areas of the surface where the hydrogen network is broken.
We used molecular dynamics simulations to predict the steady state crystal shape of naphthalene grown from ethanol solution. The simulations were performed at constant supersaturation by utilizing a recently proposed algorithm [Perego et al., J. Chem . Phys., 142, 2015, 144113]. To bring the crystal growth within the timescale of a molecular dynamics simulation we applied Well-Tempered Metadynamics with a spatially constrained collective variable, which focuses the sampling on the growing layer. We estimated that the resulting steady state crystal shape corresponds to a rhombic prism, which is in line with experiments. Further, we observed that at the investigated supersaturations, the ${00bar{1}}$ face grows in a two step two dimensional nucleation mechanism while the considerably faster growing faces ${1bar{1}0}$ and ${20bar{1}}$ grow new layers with a one step two dimensional nucleation mechanism.
A widely spread method of crystal preparation is to precipitate it from a supersaturated solution. In such a process, control of solution concentration is of paramount importance. Nucleation process, polymorph selection, and crystal habits depend cru cially on this thermodynamic parameter. When performing simulations in the canonical ensemble as the crystalline phase is deposited the solution is depleted of solutes. This unavoidable modification of the thermodynamic conditions leads to significant artifact. Here we adopt the idea of the constant chemical potential molecular dynamics approach of Perego et al. [J. Chem. Phys. 2015, 142, 144113] to the study of nucleation. Our method allows determining the crystal nucleus size and nucleation rates at constant supersaturation. As an example we study the homogeneous nucleation of sodium chloride from its supersaturated aqueous solution.
A comprehensive microscopic understanding of ambient liquid water is a major challenge for $ab$ $initio$ simulations as it simultaneously requires an accurate quantum mechanical description of the underlying potential energy surface (PES) as well as extensive sampling of configuration space. Due to the presence of light atoms (e.g., H or D), nuclear quantum fluctuations lead to observable changes in the structural properties of liquid water (e.g., isotope effects), and therefore provide yet another challenge for $ab$ $initio$ approaches. In this work, we demonstrate that the combination of dispersion-inclusive hybrid density functional theory (DFT), the Feynman discretized path-integral (PI) approach, and machine learning (ML) constitutes a versatile $ab$ $initio$ based framework that enables extensive sampling of both thermal and nuclear quantum fluctuations on a quite accurate underlying PES. In particular, we employ the recently developed deep potential molecular dynamics (DPMD) model---a neural-network representation of the $ab$ $initio$ PES---in conjunction with a PI approach based on the generalized Langevin equation (PIGLET) to investigate how isotope effects influence the structural properties of ambient liquid H$_2$O and D$_2$O. Through a detailed analysis of the interference differential cross sections as well as several radial and angular distribution functions, we demonstrate that this approach can furnish a semi-quantitative prediction of these subtle isotope effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا