ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent Slowing of a Supersonic Beam with an Atomic Paddle

118   0   0.0 ( 0 )
 نشر من قبل Edvardas Narevicius
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the slowing of a supersonic beam by elastic reflection from a receding atomic mirror. We use a pulsed supersonic nozzle to generate a 511 +/- 9 m/s beam of helium that we slow by reflection from a Si(111)-H(1x1) crystal placed on the tip of a spinning rotor. We were able to reduce the velocity of helium by 246 m/s and show that the temperature of the slowed beam is lower than 250 mK in the co-moving frame.



قيم البحث

اقرأ أيضاً

We report the stopping of an atomic beam, using a series of pulsed electromagnetic coils. We use a supersonic beam of metastable neon created in a gas discharge as a monochromatic source of paramagnetic atoms. A series of coils is fired in a timed se quence to bring the atoms to near-rest, where they are detected on a micro-channel plate. Applications to fundamental problems in physics and chemistry are discussed.
115 - H. B. Xue , Y. Y. Feng , S. Chen 2014
We demonstrate an atom interferometer that uses a laser-cooled continuous beam of $^{87}$Rb atoms having velocities of 10--20 m/s. With spatially separated Raman beams to coherently manipulate the atomic wave packets, Mach--Zehnder interference fring es are observed at an interference distance of 2L = 19 mm. The apparatus operates within a small enclosed area of 0.07 mm$^2$ at a bandwidth of 190 Hz with a deduced sensitivity of $7.8times10^{-5}$ rad/s/$sqrt{{Hz}}$ for rotations. Using a low-velocity continuous atomic source in an atom interferometer enables high sampling rates and bandwidths without sacrificing sensitivity and compactness, which are important for applications in real dynamic environments.
Recent technological advances allowed the coherent optical manipulation of high-energy electron wavepackets with attosecond precision. Here we theoretically investigate the collision of optically-modulated pulsed electron beams with atomic targets an d reveal a quantum interference associated with different momentum components of the incident broadband electron pulse, which coherently modulates both the elastic and inelastic scattering cross sections. We show that the quantum interference has a high spatial sensitivity at the level of Angstroms, offering potential applications in high-resolution ultrafast electron microscopy. Our findings are rationalized by a simple model.
93 - S. E. Galica , L. Aldridge , 2013
Stimulated optical forces offer a simple and efficient method for providing optical forces far in excess of the saturated radiative force. The bichromatic force, using a counterpropagating pair of two-color beams, has so far been the most effective o f these stimulated forces for deflecting and slowing atomic beams. We have numerically studied the evolution of a two-level system under several different bichromatic and polychromatic light fields, while retaining the overall geometry of the bichromatic force. New insights are gained by studying the time-dependent trajectory of the Bloch vector, including a better understanding of the remarkable robustness of bi- and polychromatic forces with imbalanced beam intensities. We show that a four-color polychromatic force exhibits great promise. By adding new frequency components at the third harmonic of the original bichromatic detuning, the force is increased by nearly 50% and its velocity range is extended by a factor of three, while the required laser power is increased by only 33%. The excited-state fraction, crucial to possible application to molecules, is reduced from 41% to 24%. We also discuss some important differences between polychromatic forces and pulse trains from a high-repetition-rate laser.
Photons carry one unit of angular momentum associated with their spin~cite{Beth1936}. Structured vortex beams carry additional orbital angular momentum which can also be transferred to matter~cite{Allen1992}. This extra twist has been used for exampl e to drive motion of microscopic particles in optical tweezers as well as to create vortices in degenerate quantum gases~cite{He1995,Andersen2006}. Here we demonstrate the transfer of optical orbital angular momentum from the transverse spatial structure of the beam to the internal (electronic) degrees of freedom of an atom. Probing a quadrupole transition of a single trapped $^{40}$Ca$^+$ ion localized at the center of the vortex, we observe strongly modified selection rules, accounting for both the photon spin and the vorticity of the field. In particular, we show that an atom can absorb two quanta of angular momentum from a single photon even when rotational symmetry is conserved. In contrast to previous findings~cite{Araoka2005,Loeffler2011a,Mathevet2013}, our experiment allows for conditions where the vorticity of the laser beam determines the optical excitation, contributing to the long-standing discussion on whether the orbital angular momentum of photons can be transferred to atomic internal degrees of freedom~cite{VanEnk1994,Babiker2002,Jauregui2004, Schmiegelow2012, Mondal2014, Scholz-Marggraf2014} and paves the way for its use to tailor light-matter interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا