ترغب بنشر مسار تعليمي؟ اضغط هنا

Stopping Supersonic Beams with an Atomic Coilgun

89   0   0.0 ( 0 )
 نشر من قبل Edvardas Narevicius
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the stopping of an atomic beam, using a series of pulsed electromagnetic coils. We use a supersonic beam of metastable neon created in a gas discharge as a monochromatic source of paramagnetic atoms. A series of coils is fired in a timed sequence to bring the atoms to near-rest, where they are detected on a micro-channel plate. Applications to fundamental problems in physics and chemistry are discussed.


قيم البحث

اقرأ أيضاً

We report the stopping of a molecular oxygen beam, using a series of pulsed electromagnetic coils. A series of coils is fired in a timed sequence to bring the molecules to near-rest, where they are detected with a quadrupole mass spectrometer. Applications to cold chemistry are discussed.
We report the slowing of a supersonic beam by elastic reflection from a receding atomic mirror. We use a pulsed supersonic nozzle to generate a 511 +/- 9 m/s beam of helium that we slow by reflection from a Si(111)-H(1x1) crystal placed on the tip of a spinning rotor. We were able to reduce the velocity of helium by 246 m/s and show that the temperature of the slowed beam is lower than 250 mK in the co-moving frame.
We present a new method for nanoscale atom lithography. We propose the use of a supersonic atomic beam, which provides an extremely high-brightness and cold source of fast atoms. The atoms are to be focused onto a substrate using a thin magnetic film , into which apertures with widths on the order of 100 nm have been etched. Focused spot sizes near or below 10 nm, with focal lengths on the order of 10 microns, are predicted. This scheme is applicable both to precision patterning of surfaces with metastable atomic beams and to direct deposition of material.
Atomic physics techniques for the determination of ground-state properties of radioactive isotopes are very sensitive and provide accurate masses, binding energies, Q-values, charge radii, spins, and electromagnetic moments. Many fields in nuclear ph ysics benefit from these highly accurate numbers. They give insight into details of the nuclear structure for a better understanding of the underlying effective interactions, provide important input for studies of fundamental symmetries in physics, and help to understand the nucleosynthesis processes that are responsible for the observed chemical abundances in the Universe. Penning-trap and and storage-ring mass spectrometry as well as laser spectroscopy of radioactive nuclei have now been used for a long time but significant progress has been achieved in these fields within the last decade. The basic principles of laser spectroscopic investigations, Penning-trap and storage-ring mass measurements of short-lived nuclei are summarized and selected physics results are discussed.
Atomic clocks have been transformational in science and technology, leading to innovations such as global positioning, advanced communications, and tests of fundamental constant variation. Next-generation optical atomic clocks can extend the capabili ty of these timekeepers, where researchers have long aspired toward measurement precision at 1 part in $bm{10^{18}}$. This milestone will enable a second revolution of new timing applications such as relativistic geodesy, enhanced Earth- and space-based navigation and telescopy, and new tests on physics beyond the Standard Model. Here, we describe the development and operation of two optical lattice clocks, both utilizing spin-polarized, ultracold atomic ytterbium. A measurement comparing these systems demonstrates an unprecedented atomic clock instability of $bm{1.6times 10^{-18}}$ after only $bm{7}$ hours of averaging.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا