ترغب بنشر مسار تعليمي؟ اضغط هنا

Excitation of an Atomic Transition with a Vortex Laser Beam

64   0   0.0 ( 0 )
 نشر من قبل Christian Tom\\'as Schmiegelow
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photons carry one unit of angular momentum associated with their spin~cite{Beth1936}. Structured vortex beams carry additional orbital angular momentum which can also be transferred to matter~cite{Allen1992}. This extra twist has been used for example to drive motion of microscopic particles in optical tweezers as well as to create vortices in degenerate quantum gases~cite{He1995,Andersen2006}. Here we demonstrate the transfer of optical orbital angular momentum from the transverse spatial structure of the beam to the internal (electronic) degrees of freedom of an atom. Probing a quadrupole transition of a single trapped $^{40}$Ca$^+$ ion localized at the center of the vortex, we observe strongly modified selection rules, accounting for both the photon spin and the vorticity of the field. In particular, we show that an atom can absorb two quanta of angular momentum from a single photon even when rotational symmetry is conserved. In contrast to previous findings~cite{Araoka2005,Loeffler2011a,Mathevet2013}, our experiment allows for conditions where the vorticity of the laser beam determines the optical excitation, contributing to the long-standing discussion on whether the orbital angular momentum of photons can be transferred to atomic internal degrees of freedom~cite{VanEnk1994,Babiker2002,Jauregui2004, Schmiegelow2012, Mondal2014, Scholz-Marggraf2014} and paves the way for its use to tailor light-matter interactions.



قيم البحث

اقرأ أيضاً

A natural approach to measure the time of arrival of an atom at a spatial region is to illuminate this region with a laser and detect the first fluorescence photons produced by the excitation of the atom and subsequent decay. We investigate the actua l physical content of such a measurement in terms of atomic dynamical variables, taking into account the finite width of the laser beam. Different operation regimes are identified, in particular the ones in which the quantum current density may be obtained.
81 - C. Weinheimer 2010
The underlying physics of neutrino oscillation in vacuum can be demonstrated by an optical analogical experiment. Two different neutrino flavors are represented by two polarization states of a laser beam, whereas the different phase propagation in va cuum is mimicked by the propagation difference of an ordinary and an extraordinary beam in a birefringent crystal. This allows us to demonstrate neutrino oscillation by optical methods in a fully microscopic way at the particle level. The description of both realizations of oscillation is also mathematically identical. In our demonstration experiment we can vary the oscillation parameters such as propagation length L and mixing angle Theta.
We propose a new type of superradiant laser based on a hot atomic beam traversing an optical cavity. We show that the theoretical minimum linewidth and maximum power are competitive with the best ultracoherent clock lasers. Also, our system operates naturally in continuous wave mode, which has been elusive for superradiant lasers so far. Unlike existing ultracoherent lasers, our design is simple and rugged. This makes it a candidate for the first widely accessible ultracoherent laser, as well as the first to realize sought-after applications of ultracoherent lasers in challenging environments.
We report significant improvements in the retrieval efficiency of a single excitation stored in an atomic ensemble and in the subsequent generation of strongly correlated pairs of photons. A 50% probability to transform the stored excitation into one photon in a well-defined spatio-temporal mode at the output of the ensemble is demonstrated. These improvements are illustrated by the generation of high-quality heralded single photons with a suppression of the two-photon component below 1% of the value for a coherent state. A broad characterization of our system is performed for different parameters in order to provide input for the future design of realistic quantum networks.
We theoretically analyze the collective dynamics of a thermal beam of atomic dipoles that couple to a single mode when traversing an optical cavity. For this setup we derive a semiclassical model and determine the onset of superradiant emission and i ts stability. We derive analytical expressions for the linewidth of the emitted light and compare them with numerical simulations. In addition, we find and predict two different superradiant phases; a steady-state superradiant phase and a multi-component superradiant phase. In the latter case we observe sidebands in the frequency spectrum that can be calculated using a stability analysis of the amplitude mode of the collective dipole. We show that both superradiant phases are robust against free-space spontaneous emission and $T_2$ dephasing processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا