ﻻ يوجد ملخص باللغة العربية
An erbium doped micro-laser is demonstrated utilizing $mathrm{SiO_{2}}$ microdisk resonators on a silicon chip. Passive microdisk resonators exhibit whispering gallery type (WGM) modes with intrinsic optical quality factors of up to $6times{10^{7}}$ and were doped with trivalent erbium ions (peak concentration $mathrm{sim3.8times{10^{20}cm^{-3})}}$ using MeV ion implantation. Coupling to the fundamental WGM of the microdisk resonator was achieved by using a tapered optical fiber. Upon pumping of the $^{4}% I_{15/2}longrightarrow$ $^{4}I_{13/2}$ erbium transition at 1450 nm, a gradual transition from spontaneous to stimulated emission was observed in the 1550 nm band. Analysis of the pump-output power relation yielded a pump threshold of 43 $mathrm{mu}$W and allowed measuring the spontaneous emission coupling factor: $betaapprox1times10^{-3}$.
Erbium-doped lithium niobate high-Q microdisk cavities were fabricated in batches by UV exposure, inductively coupled plasma reactive ion etching and chemo-mechanical polishing. The stimulated emission at 1531.6 nm was observed under the pump of a na
The commercialization of lithium niobate on insulator (LNOI) wafer has sparked significant on-chip photonic integration application due to its remarkable photonic, photoacoustic, electro-optic and piezoelectric nature. A variety of on-chip LNOI-based
We demonstrate an on-chip Yb3+-doped lithium niobate (LN) microdisk laser. The intrinsic quality factors of the fabricated Yb3+-doped LN microdisk resonator are measured up to 3.79x10^5 at 976 nm wavelength and 1.1x10^6 at 1514 nm wavelength. The mul
Lithium niobate on insulator (LNOI), regarded as an important candidate platform for optical integration due to its excellent nonlinear, electro-optic and other physical properties, has become a research hotspot. Light source, as an essential compone
Lithium niobate on insulator (LNOI), as an emerging and promising optical integration platform, faces shortages of on-chip active devices including lasers and amplifiers. Here, we report the fabrication on-chip erbium-doped LNOI waveguide amplifiers