ترغب بنشر مسار تعليمي؟ اضغط هنا

On-chip multi-color microdisk laser on Yb3+-doped thin-film lithium niobate

139   0   0.0 ( 0 )
 نشر من قبل Haisu Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate an on-chip Yb3+-doped lithium niobate (LN) microdisk laser. The intrinsic quality factors of the fabricated Yb3+-doped LN microdisk resonator are measured up to 3.79x10^5 at 976 nm wavelength and 1.1x10^6 at 1514 nm wavelength. The multi-mode laser emissions are obtained in a band from 1020 nm to 1070 nm pumped by 984 nm laser and with the low threshold of 103 {mu}W, resulting in a slope efficiency of 0.53% at room temperature. Furthermore, the second-harmonic frequency of pump light and the sum-frequency of the pump light and laser emissions are both generated in the on-chip Yb3+-doped LN microdisk benefited from the strong c{hi}(2) nonlinearity of LN. These microdisk lasers are expected to contribute to the high-density integration of LNOI-based photonic chip.

قيم البحث

اقرأ أيضاً

Erbium-doped lithium niobate high-Q microdisk cavities were fabricated in batches by UV exposure, inductively coupled plasma reactive ion etching and chemo-mechanical polishing. The stimulated emission at 1531.6 nm was observed under the pump of a na rrow-band laser working at 974 nm in erbium-doped lithium niobate microdisk cavity with threshold down to 400 {mu}W and a conversion efficiency of 3.1{times}10^{-4} %, laying the foundation for the LNOI integrated light source research.
The commercialization of lithium niobate on insulator (LNOI) wafer has sparked significant on-chip photonic integration application due to its remarkable photonic, photoacoustic, electro-optic and piezoelectric nature. A variety of on-chip LNOI-based optical devices with high performance has been realized in recent years. Here we developed 1 mol% erbium-doped LN crystal and its LNOI wafer, and fabricated an erbium-doped LNOI microdisk with high quality ($ sim $ 1.05$times 10^{^5}$ ). C-band laser emission with $ sim $1530 nm and $ sim $1560 nm from the high-Q erbium-doped LNOI microdisk was demonstrated both with 974 nm and 1460 nm pumping, and the latter has better thermal stability. This microlaser would play an important role in the photonic integrated circuits of lithium niobate platform.
Erbium-doped lithium niobate on insulator (LNOI) laser plays an important role in the complete photonic integrated circuits (PICs). Here, we demonstrate an integrated tunable whisper galley single mode laser (WGSML) by making use of a pair of coupled microdisk and microring on LNOI. A 974 nm single-mode pump light can have an excellent resonance in the designed microdisk, which is beneficial to the whisper gallery mode (WGM) laser generation. The WGSML at 1560.40 nm with a maximum 31.4 dB side mode suppression ratio (SMSR) has been achieved. By regulating the temperature, WGSMLs output power increased and the central wavelength can be changed from 1560.30 nm to 1560.40 nm. Whats more, 1560.60 nm and 1565.00 nm WGSMLs have been achieved by changing the coupling gap width between microdisk and microring. We can also use the electro-optic effect of LNOI to obtain more accurate adjustable WGSMLs in further research.
105 - Di Zhu , Linbo Shao , Mengjie Yu 2021
Lithium niobate (LN), an outstanding and versatile material, has influenced our daily life for decades: from enabling high-speed optical communications that form the backbone of the Internet to realizing radio-frequency filtering used in our cell pho nes. This half-century-old material is currently embracing a revolution in thin-film LN integrated photonics. The success of manufacturing wafer-scale, high-quality, thin films of LN on insulator (LNOI), accompanied with breakthroughs in nanofabrication techniques, have made high-performance integrated nanophotonic components possible. With rapid development in the past few years, some of these thin-film LN devices, such as optical modulators and nonlinear wavelength converters, have already outperformed their legacy counterparts realized in bulk LN crystals. Furthermore, the nanophotonic integration enabled ultra-low-loss resonators in LN, which unlocked many novel applications such as optical frequency combs and quantum transducers. In this Review, we cover -- from basic principles to the state of the art -- the diverse aspects of integrated thin-film LN photonics, including the materials, basic passive components, and various active devices based on electro-optics, all-optical nonlinearities, and acousto-optics. We also identify challenges that this platform is currently facing and point out future opportunities. The field of integrated LNOI photonics is advancing rapidly and poised to make critical impacts on a broad range of applications in communication, signal processing, and quantum information.
94 - Qiang Luo , Chen Yang , Ru Zhang 2021
Lithium niobate on insulator (LNOI), regarded as an important candidate platform for optical integration due to its excellent nonlinear, electro-optic and other physical properties, has become a research hotspot. Light source, as an essential compone nt for integrated optical system, is urgently needed. In this paper, we reported the realization of 1550-nm band on-chip LNOI microlasers based on erbium-doped LNOI ring cavities with loaded quality factors higher than one million, which were fabricated by using electron beam lithography and inductively coupled plasma reactive ion etching processes. These microlasers demonstrated a low pump threshold of ~20 {mu}W and stable performance under the pump of a 980-nm band continuous laser. Comb-like laser spectra spanning from 1510 nm to 1580 nm were observed in high pump power regime, which lays the foundation of the realization of pulsed laser and frequency combs on rare-earth ion doped LNOI platform. This work has effectively promoted the development of on-chip integrated active LNOI devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا