ﻻ يوجد ملخص باللغة العربية
Reliable calculations of financial risk require that the fat-tailed nature of prices changes is included in risk measures. To this end, a non-Gaussian approach to financial risk management is presented, modeling the power-law tails of the returns distribution in terms of a Student-$t$ (or Tsallis) distribution. Non-Gaussian closed-form solutions for Value-at-Risk and Expected Shortfall are obtained and standard formulae known in the literature under the normality assumption are recovered as a special case. The implications of the approach for risk management are demonstrated through an empirical analysis of financial time series from the Italian stock market. Detailed comparison with the results of the widely used procedures of quantitative finance, such as parametric normal approach, RiskMetrics methodology and historical simulation, as well as with previous findings in the literature, are shown and commented. Particular attention is paid to quantify the size of the errors affecting the risk measures obtained according to different methodologies, by employing a bootstrap technique.
In this paper, we study general monetary risk measures (without any convexity or weak convexity). A monetary (respectively, positively homogeneous) risk measure can be characterized as the lower envelope of a family of convex (respectively, coherent)
We study the Gromov waist in the sense of $t$-neighborhoods for measures in the Euclidean space, motivated by the famous theorem of Gromov about the waist of radially symmetric Gaussian measures. In particular, it turns our possible to extend Gromovs
In this paper, we consider the problem of equal risk pricing and hedging in which the fair price of an option is the price that exposes both sides of the contract to the same level of risk. Focusing for the first time on the context where risk is mea
We propose a method to assess the intrinsic risk carried by a financial position $X$ when the agent faces uncertainty about the pricing rule assigning its present value. Our approach is inspired by a new interpretation of the quasiconvex duality in a
The paper analyzes risk assessment for cash flows in continuous time using the notion of convex risk measures for processes. By combining a decomposition result for optional measures, and a dual representation of a convex risk measure for bounded cd