ترغب بنشر مسار تعليمي؟ اضغط هنا

Monetary Risk Measures

95   0   0.0 ( 0 )
 نشر من قبل Jianming Xia
 تاريخ النشر 2020
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study general monetary risk measures (without any convexity or weak convexity). A monetary (respectively, positively homogeneous) risk measure can be characterized as the lower envelope of a family of convex (respectively, coherent) risk measures. The proof does not depend on but easily leads to the classical representation theorems for convex and coherent risk measures. When the law-invariance and the SSD (second-order stochastic dominance)-consistency are involved, it is not the convexity (respectively, coherence) but the comonotonic convexity (respectively, comonotonic coherence) of risk measures that can be used for such kind of lower envelope characterizations in a unified form. The representation of a law-invariant risk measure in terms of VaR is provided.



قيم البحث

اقرأ أيضاً

We study combinations of risk measures under no restrictive assumption on the set of alternatives. We develop and discuss results regarding the preservation of properties and acceptance sets for the combinations of risk measures. One of the main resu lts is the representation for resulting risk measures from the properties of both alternative functionals and combination functions. To that, we build on the development of a representation for arbitrary mixture of convex risk measures. In this case, we obtain a penalty that recalls the notion of inf-convolution under theoretical measure integration. As an application, we address the context of probability-based risk measurements for functionals on the set of distribution functions. We develop results related to this specific context. We also explore features of individual interest generated by our framework, such as the preservation of continuity properties, the representation of worst-case risk measures, stochastic dominance and elicitability. We also address model uncertainty measurement under our framework and propose a new class of measures for this task.
The risk and return profiles of a broad class of dynamic trading strategies, including pairs trading and other statistical arbitrage strategies, may be characterized in terms of excursions of the market price of a portfolio away from a reference leve l. We propose a mathematical framework for the risk analysis of such strategies, based on a description in terms of price excursions, first in a pathwise setting, without probabilistic assumptions, then in a Markovian setting. We introduce the notion of delta-excursion, defined as a path which deviates by delta from a reference level before returning to this level. We show that every continuous path has a unique decomposition into delta-excursions, which is useful for the scenario analysis of dynamic trading strategies, leading to simple expressions for the number of trades, realized profit, maximum loss and drawdown. As delta is decreased to zero, properties of this decomposition relate to the local time of the path. When the underlying asset follows a Markov process, we combine these results with Itos excursion theory to obtain a tractable decomposition of the process as a concatenation of independent delta-excursions, whose distribution is described in terms of Itos excursion measure. We provide analytical results for linear diffusions and give new examples of stochastic processes for flexible and tractable modeling of excursions. Finally, we describe a non-parametric scenario simulation method for generating paths whose excursion properties match those observed in empirical data.
While abundant empirical studies support the long-range dependence (LRD) of mortality rates, the corresponding impact on mortality securities are largely unknown due to the lack of appropriate tractable models for valuation and risk management purpos es. We propose a novel class of Volterra mortality models that incorporate LRD into the actuarial valuation, retain tractability, and are consistent with the existing continuous-time affine mortality models. We derive the survival probability in closed-form solution by taking into account of the historical health records. The flexibility and tractability of the models make them useful in valuing mortality-related products such as death benefits, annuities, longevity bonds, and many others, as well as offering optimal mean-variance mortality hedging rules. Numerical studies are conducted to examine the effect of incorporating LRD into mortality rates on various insurance products and hedging efficiency.
This review presents the set of electricity price models proposed in the literature since the opening of power markets. We focus on price models applied to financial pricing and risk management. We classify these models according to their ability to represent the random behavior of prices and some of their characteristics. In particular, this classification helps users to choose among the most suitable models for their risk management problems.
Recently, Castagnoli et al. (2021) introduce the class of star-shaped risk measures as a generalization of convex and coherent ones, proving that there is a representation as the pointwise minimum of some family composed by convex risk measures. Conc omitantly, Jia et al. (2020) prove a similar representation result for monetary risk measures, which are more general than star-shaped ones. Then, there is a question on how both classes are connected. In this letter, we provide an answer by casting light on the importance of the acceptability of 0, which is linked to the property of normalization. We then show that under mild conditions, a monetary risk measure is only a translation away from star-shapedness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا