ترغب بنشر مسار تعليمي؟ اضغط هنا

Disentangling Price, Risk and Model Risk: V&R measures

155   0   0.0 ( 0 )
 نشر من قبل Marco Maggis Doctor
 تاريخ النشر 2017
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a method to assess the intrinsic risk carried by a financial position $X$ when the agent faces uncertainty about the pricing rule assigning its present value. Our approach is inspired by a new interpretation of the quasiconvex duality in a Knightian setting, where a family of probability measures replaces the single reference probability and is then applied to value financial positions. Diametrically, our construction of Value&Risk measures is based on the selection of a basket of claims to test the reliability of models. We compare a random payoff $X$ with a given class of derivatives written on $X$ , and use these derivatives to textquotedblleft testtextquotedblright the pricing measures. We further introduce and study a general class of Value&Risk measures $% R(p,X,mathbb{P})$ that describes the additional capital that is required to make $X$ acceptable under a probability $mathbb{P}$ and given the initial price $p$ paid to acquire $X$.



قيم البحث

اقرأ أيضاً

We present the Shortfall Deviation Risk (SDR), a risk measure that represents the expected loss that occurs with certain probability penalized by the dispersion of results that are worse than such an expectation. SDR combines Expected Shortfall (ES) and Shortfall Deviation (SD), which we also introduce, contemplating two fundamental pillars of the risk concept, the probability of adverse events and the variability of an expectation, and considers extreme results. We demonstrate that SD is a generalized deviation measure, whereas SDR is a coherent risk measure. We achieve the dual representation of SDR, and we discuss issues such as its representation by a weighted ES, acceptance sets, convexity, continuity and the relationship with stochastic dominance. Illustrations with real and simulated data allow us to conclude that SDR offers greater protection in risk measurement compared with VaR and ES, especially in times of significant turbulence in riskier scenarios.
In this paper, we introduce the rich classes of conditional distortion (CoD) risk measures and distortion risk contribution ($Delta$CoD) measures as measures of systemic risk and analyze their properties and representations. The classes include the w ell-known conditional Value-at-Risk, conditional Expected Shortfall, and risk contribution measures in terms of the VaR and ES as special cases. Sufficient conditions are presented for two random vectors to be ordered by the proposed CoD-risk measures and distortion risk contribution measures. These conditions are expressed using the conventional stochastic dominance, increasing convex/concave, dispersive, and excess wealth orders of the marginals and canonical positive/negative stochastic dependence notions. Numerical examples are provided to illustrate our theoretical findings. This paper is the second in a triplet of papers on systemic risk by the same authors. In cite{DLZorder2018a}, we introduce and analyze some new stochastic orders related to systemic risk. In a third (forthcoming) paper, we attribute systemic risk to the different participants in a given risky environment.
We propose a generalization of the classical notion of the $V@R_{lambda}$ that takes into account not only the probability of the losses, but the balance between such probability and the amount of the loss. This is obtained by defining a new class of law invariant risk measures based on an appropriate family of acceptance sets. The $V@R_{lambda}$ and other known law invariant risk measures turn out to be special cases of our proposal. We further prove the dual representation of Risk Measures on $mathcal{P}(% mathbb{R}).$
This paper gives an overview of the theory of dynamic convex risk measures for random variables in discrete time setting. We summarize robust representation results of conditional convex risk measures, and we characterize various time consistency pro perties of dynamic risk measures in terms of acceptance sets, penalty functions, and by supermartingale properties of risk processes and penalty functions.
Risk assessment under different possible scenarios is a source of uncertainty that may lead to concerning financial losses. We address this issue, first, by adapting a robust framework to the class of spectral risk measures. Second, we propose a Devi ation-based approach to quantify uncertainty. Furthermore, the theory is illustrated with a practical case study from NASDAQ index.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا