ترغب بنشر مسار تعليمي؟ اضغط هنا

Amplification and Scintillation Properties of Oxygen-Rich Gas Mixtures for Optical-TPC Applications

62   0   0.0 ( 0 )
 نشر من قبل Moshe Gai
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We studied electron amplification and light emission from avalanches in oxygen-containing gas mixtures. The mixtures investigated in this work included, among others, CO2 and N2O mixed with Triethylamine (TEA) or N2. Double-Step Parallel Gap (DSPG) multipliers and THick Gas Electron Multipliers (THGEM) were investigated. High light yields were measured from CO2+N2 and CO2+TEA, though with different emission spectra. We observed the characteristic wave-length emission of N2 and of TEA and used a polymer wave-length shifter to convert TEA UV-light into the visible spectrum. The results of these measurements indicate the applicability of optical recording of ionizing tracks in a TPC target-detector designed to study the cross section of the 16O(g,a)12C reaction, a central problem in nuclear astrophysics.



قيم البحث

اقرأ أيضاً

The performance and long term stability of an optically readout Time Projection Chamber with an electron amplification structure based on three Gas Electron Multipliers was studied. He/CF$_4$ based gas mixtures were used in two different proportions (60/40 and 70/30) in a CYGNO prototype with 7 litres sensitive volume. With electrical configurations providing very similar electron gains, an almost full detection efficiency in the whole detector volume was found with both mixtures, while a light yield about 20% larger for the 60/40 was found. The electrostatic stability was tested by monitoring voltages and currents during 25 days. The detector worked in very stable and safe condition for the whole period. In the presence of less CF$_4$, a larger probability of unstable events was clearly detected.
93 - A. Baldini , C. Bemporad , F. Cei 2004
The optical properties of LXe in the vacuum ultra violet (VUV), determining the performance of a scintillation calorimeter, are discussed in detail. The available data, measured in a wider spectral region from visible to UV light, and in a large rang e of Xe densities, from gas to liquid, are examined. It is shown that this information can be used for deriving the LXe optical properties in the VUV. A comparison is made with the few direct measurements in LXe for VUV light resulting from the LXe excitation by ionizing particles. A useful relation is obtained which connects the Rayleigh scattering length to the refractive index in LXe.
We designed a versatile analog front-end chip, called LTARS, for TPC-applications, primarily targeted at dual-phase liquid Ar-TPCs for neutrino experiments and negative-ion $mu$-TPCs for directional dark matter searches. Low-noise performance and wid e dynamic range are two requirements for reading out the signals induced on the TPC readout channels. One of the development objectives is to establish the analog processing circuits under low temperature operation, which are designed on function block basis as reusable IPs (Intellectual Properties). The newly developed ASIC was implemented in the Silterra 180~nm CMOS technology and has 16 readout channels. We carried out the performance test at room temperature and the results showed an equivalent noise charge of 2695$pm$71~e$^-$ (rms) with a detector capacitance of 300~pF. The dynamic range was measured to be 20--100~fC in the low-gain mode and 200--1600~fC in the high-gain mode within 10% integral nonlinearity at room temperature. We also tested the performance at the liquid-Ar temperature and found a deterioration of the noise level with a longer shaper time. Based on these results, we also discuss a unique simulation methodology for future cold-electronics development. This method can be applicable to design the electronics used at low temperature.
Far-ultraviolet (FUV) scintillation signals have been measured in heavy noble gases (argon, krypton, xenon) following boron-neutron capture ($^{10}$B($n,alpha$)$^7$Li) in $^{10}$B thin films. The observed scintillation yields are comparable to the yi elds from some liquid and solid neutron scintillators. At noble gas pressures of 107 kPa, the number of photons produced per neutron absorbed following irradiation of a 1200 nm thick $^{10}$B film was 14,000 for xenon, 11,000 for krypton, and 6000 for argon. The absolute scintillation yields from the experimental configuration were calculated using data from (1) experimental irradiations, (2) thin-film characterizations, (3) photomultiplier tube calibrations, and (4) photon collection modeling. Both the boron films and the photomultiplier tube were characterized at the National Institute of Standards and Technology. Monte Carlo modeling of the reaction cell provided estimates of the photon collection efficiency and the transport behavior of $^{10}$B($n,alpha$)$^7$Li reaction products escaping the thin films. Scintillation yields increased with gas pressure due to increased ionization and excitation densities of the gases from the $^{10}$B($n,alpha$)$^7$Li reaction products, increased frequency of three-body, excimer-forming collisions, and reduced photon emission volumes (i.e., larger solid angle) at higher pressures. Yields decreased for thicker $^{10}$B thin films due to higher average energy loss of the $^{10}$B($n,alpha$)$^7$Li reaction products escaping the films. The relative standard uncertainties in the measurements were determined to lie between 14 % and 16 %. The observed scintillation signal demonstrates that noble gas excimer scintillation is promising for use in practical neutron detectors.
66 - M. Berger , M. Ball (1 2017
A Time Projection Chamber (TPC) is an ideal device for the detection of charged particle tracks in a large volume covering a solid angle of almost $4pi$. The high density of hits on a given particle track facilitates the task of pattern recognition i n a high-occupancy environment and in addition provides particle identification by measuring the specific energy loss for each track. For these reasons, TPCs with Multiwire Proportional Chamber (MWPC) amplification have been and are widely used in experiments recording heavy-ion collisions. A significant drawback, however, is the large dead time of the order of 1 ms per event generated by the use of a gating grid, which is mandatory to prevent ions created in the amplification region from drifting back into the drift volume, where they would severely distort the drift path of subsequent tracks. For experiments with higher event rates this concept of a conventional TPC operating with a triggered gating grid can therefore not be applied without a significant loss of data. A continuous readout of the signals is the more appropriate way of operation. This, however, constitutes a change of paradigm with considerable challenges to be met concerning the amplification region, the design and bandwidth of the readout electronics, and the data handling. A mandatory prerequisite for such an operation is a sufficiently good suppression of the ion backflow from the avalanche region, which otherwise limits the tracking and particle identification capabilities of such a detector. Gas Electron Multipliers (GEM) are a promising candidate to combine excellent spatial resolution with an intrinsic suppression of ions. In this paper we describe the design, construction and the commissioning of a large TPC with GEM amplification and without gating grid (GEM-TPC).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا