ﻻ يوجد ملخص باللغة العربية
Far-ultraviolet (FUV) scintillation signals have been measured in heavy noble gases (argon, krypton, xenon) following boron-neutron capture ($^{10}$B($n,alpha$)$^7$Li) in $^{10}$B thin films. The observed scintillation yields are comparable to the yields from some liquid and solid neutron scintillators. At noble gas pressures of 107 kPa, the number of photons produced per neutron absorbed following irradiation of a 1200 nm thick $^{10}$B film was 14,000 for xenon, 11,000 for krypton, and 6000 for argon. The absolute scintillation yields from the experimental configuration were calculated using data from (1) experimental irradiations, (2) thin-film characterizations, (3) photomultiplier tube calibrations, and (4) photon collection modeling. Both the boron films and the photomultiplier tube were characterized at the National Institute of Standards and Technology. Monte Carlo modeling of the reaction cell provided estimates of the photon collection efficiency and the transport behavior of $^{10}$B($n,alpha$)$^7$Li reaction products escaping the thin films. Scintillation yields increased with gas pressure due to increased ionization and excitation densities of the gases from the $^{10}$B($n,alpha$)$^7$Li reaction products, increased frequency of three-body, excimer-forming collisions, and reduced photon emission volumes (i.e., larger solid angle) at higher pressures. Yields decreased for thicker $^{10}$B thin films due to higher average energy loss of the $^{10}$B($n,alpha$)$^7$Li reaction products escaping the films. The relative standard uncertainties in the measurements were determined to lie between 14 % and 16 %. The observed scintillation signal demonstrates that noble gas excimer scintillation is promising for use in practical neutron detectors.
This paper presents the results of the fast neutron irradiation (E$_n$ > 0.5MeV) of an EJ-276 scintillator performed in the MARIA research reactor with fluence up to 5.3$times$10$^{15}$ particles/cm$^2$. In our work, four samples with size $phi$25.4~
Proportional electroluminescence (EL) is the physical effect used in two-phase detectors for dark matter searches, to optically record (in the gas phase) the ionization signal produced by particle scattering in the liquid phase. In our previous work
The SNO+ experiment collected data as a low-threshold water Cherenkov detector from September 2017 to July 2019. Measurements of the 2.2-MeV $gamma$ produced by neutron capture on hydrogen have been made using an Am-Be calibration source, for which a
We studied electron amplification and light emission from avalanches in oxygen-containing gas mixtures. The mixtures investigated in this work included, among others, CO2 and N2O mixed with Triethylamine (TEA) or N2. Double-Step Parallel Gap (DSPG) m
Few-layer flakes of hexagonal boron nitride were prepared by ultrasonication of bulk crystals and agglomerated to form thin films. The transmission and reflection spectra of the thin films were measured. The spectral dependences of the linear and cir