ﻻ يوجد ملخص باللغة العربية
The resonant buildup of light within optical microcavities elevates the radiation pressure which mediates coupling of optical modes to the mechanical modes of a microcavity. Above a certain threshold pump power, regenerative mechanical oscillation occurs causing oscillation of certain mechanical eigenmodes. Here, we present a methodology to spatially image the micro-mechanical resonances of a toroid microcavity using a scanning probe technique. The method relies on recording the induced frequency shift of the mechanical eigenmode when in contact with a scanning probe tip. The method is passive in nature and achieves a sensitivity sufficient to spatially resolve the vibrational mode pattern associated with the thermally agitated displacement at room temperature. The recorded mechanical mode patterns are in good qualitative agreement with the theoretical strain fields as obtained by finite element simulations.
The theoretical work of V.B. Braginsky predicted that radiation pressure can couple the mechanical, mirror-eigenmodes of a Fabry-Perot resonator to its optical modes, leading to a parametric oscillation instability. This regime is characterized by re
Atomic force microscopy (AFM) is an analytical surface characterization tool which can reveal a samples topography with high spatial resolution while simultaneously probing tip-sample interactions. Local measurement of chemical properties with high-r
Two-dimensional van der Waals (vdW) crystals can sustain various types of polaritons with strong electromagnetic confinements, making them highly attractive for the nanoscale photonic and optoelectronic applications. While extensive experimental and
This paper presents multiple-modes Scanning Probe Microscopy (SPM) studies on characterize resistance switching (RS), polarization rotation (PO) and surface potential changes in copper doped ZnO (ZnO:Cu) thin films. The bipolar RS behavior is confirm
The finite-difference time-domain (FDTD) method is employed to solve the three dimensional Maxwell equation for the situation of near-field microscopy using a sub-wavelength aperture. Experimental result on unexpected high spatial resolution is reproduced by our computer simulation.