ﻻ يوجد ملخص باللغة العربية
Two-dimensional van der Waals (vdW) crystals can sustain various types of polaritons with strong electromagnetic confinements, making them highly attractive for the nanoscale photonic and optoelectronic applications. While extensive experimental and numerical studies are devoted to the polaritons of the vdW crystals, analytical models are sparse. Particularly, applying such a model to describe the polariton behaviors visualized by state-of-art near-field optical microscopy requires further investigation. Herein, we develop an analytical waveguide model to describe the polariton propagations in vdW crystals. The dispersion contours, dispersion relations, and electromagnetic field distributions of different polariton waveguide modes are derived. The model is verified by near-field optical imaging and numerical simulation of phonon polaritons in the {alpha}-MoO3, a typical vdW biaxial crystals. The model can be extended to other types of polaritons in vdW crystals, thus allowing for describing and understanding their localized electromagnetic behaviors analytically.
A theory is presented to describe the heat-flux radiated in near-field regime by a set of interacting nanoemitters held at different temperatures in vacuum or above a solid surface. We show that this thermal energy can be focused and even amplified i
The biaxial van der Waals semiconductor $alpha$-phase molybdenum trioxide ($alpha$-MoO$_3$) has recently received significant attention due to its ability to support highly anisotropic phonon polaritons (PhPs) -infrared (IR) light coupled to lattice
The recent emergence of 2D van der Waals magnets down to atomic layer thickness provides an exciting platform for exploring quantum magnetism and spintronics applications. The van der Waals nature stabilizes the long-range ferromagnetic order as a re
Excitons in monolayer transition-metal-dichalcogenides (TMDs) dominate their optical response and exhibit strong light-matter interactions with lifetime-limited emission. While various approaches have been applied to enhance light-exciton interaction
Scattering-type scanning near-field optical microscopy (s-SNOM) is instrumental in exploring polaritonic behaviors of two-dimensional (2D) materials at the nanoscale. A sharp s-SNOM tip couples momenta into 2D materials through phase matching to exci