ﻻ يوجد ملخص باللغة العربية
Atomic force microscopy (AFM) is an analytical surface characterization tool which can reveal a samples topography with high spatial resolution while simultaneously probing tip-sample interactions. Local measurement of chemical properties with high-resolution has gained much popularity in recent years with advances in dynamic AFM methodologies. A calibration factor is required to convert the electrical readout to a mechanical oscillation amplitude in order to extract quantitative information about the surface. We propose a new calibration technique for the oscillation amplitude of electrically driven probes, which is based on measuring the electrical energy input to maintain the oscillation amplitude constant. We demonstrate the application of the new technique with quartz tuning fork including the qPlus configuration, while the same principle can be applied to other piezoelectric resonators such as length extension resonators, or piezoelectric cantilevers. The calibration factor obtained by this technique is found to be in agreement with using thermal noise spectrum method for capsulated, decapsulated tuning forks and tuning forks in the qPlus configuration.
With recent advances in scanning probe microscopy (SPM), it is now routine to determine the atomic structure of surfaces and molecules while quantifying the local tip-sample interaction potentials. Such quantitative experiments are based on the accur
Spin-polarized scanning tunneling microscopy (SP-STM) measures tunnel magnetoresistance (TMR) with atomic resolution. While various methods for achieving SP probes have been developed, each is limited with respect to fabrication, performance, and all
The resonant buildup of light within optical microcavities elevates the radiation pressure which mediates coupling of optical modes to the mechanical modes of a microcavity. Above a certain threshold pump power, regenerative mechanical oscillation oc
In recent years, self-assembled semiconductor nanowires have been successfully used as ultra-sensitive cantilevers in a number of unique scanning probe microscopy (SPM) settings. We describe the fabrication of ultra-low dissipation patterned silicon
We report the development of a scanning force microscope based on an ultra-sensitive silicon nitride membrane transducer. Our development is made possible by inverting the standard microscope geometry - in our instrument, the substrate is vibrating a