ﻻ يوجد ملخص باللغة العربية
For an optically thick metallic film, the transmission for both s- and p-polarized waves is extremely low. If the metallic film is coated on both sides with a finite dielectric layer, light transmission for $p$-polarized waves can be enhanced considerably. This enhancement is not related to surface plasmon-polaritions. Instead, it is due to the interplay between Fabry-Perot interference in the coated dielectric layer and the existence of the Brewster angle at the dielectric/metallic interface. It is shown that the coated metallic films can act as excellent polarizers at infrared wavelengths.
We have conducted a theoretical study of harmonic generation from a silver grating having slits filled with GaAs. By working in the enhanced transmission regime, and by exploiting phase-locking between the pump and its harmonics, we guarantee strong
y coating a cover layer with metallization of cut wire array, the transmission of transverse electric waves (TE; the electric field is parallel to the slits) through subwavelength slits in a thin metallic film is significantly enhanced. An 800-fold e
Measurement of the transmitted intensity from a coherent monomode light source through a series of subwavelength slit arrays in Ag films, with varying array pitch and number of slits, demonstrate enhancement (suppression) by as much as a factor of 6
We propose and analyze theoretically a double magnetic plasmon resonance nanolaser, in which Ytterbium-erbium co-doped material is used as the gain medium. Through design of the double magnetic resonance modes, pumping light (980nm) can be resonantly
We report the first computational super-resolved, multi-camera integral imaging at long-wave infrared (LWIR) wavelengths. A synchronized array of FLIR Lepton cameras was assembled, and computational super-resolution and integral-imaging reconstructio