ترغب بنشر مسار تعليمي؟ اضغط هنا

Optically pumped nanolaser based on two magnetic plasmon resonance modes

241   0   0.0 ( 0 )
 نشر من قبل Hui Liu
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose and analyze theoretically a double magnetic plasmon resonance nanolaser, in which Ytterbium-erbium co-doped material is used as the gain medium. Through design of the double magnetic resonance modes, pumping light (980nm) can be resonantly absorbed and laser light (1550nm) can be resonantly generated simultaneously. We introduce a set of rate equations combined to describe the operation of the laser and predict the lasing condition. According to our calculations, the disadvantage that pumping light is difficult to be absorbed by a thin slab of gain materials can be overcome.



قيم البحث

اقرأ أيضاً

Mode-locking is predicted in a nanolaser cavity forming an effective photonic harmonic potential. The cavity is substantially more compact than a Fabry-Perot resonator with comparable pulsing period, which is here controlled by the potential. In the limit of instantaneous gain and absorption saturation, mode-locking corresponds to a stable dissipative soliton, which it very well approximated by the coherent state of a quantum mechanical harmonic oscillator. This property is robust against non-instantaneous material response and non-zero phase-intensity coupling.
337 - C.-L. Zou , F.-W. Sun , Y.-F. Xiao 2010
Plasmon mode in a silver nanowire is theoretically studied when the nanowire is placed on or near a silica substrate. It is found that the substrate has much influence on the plasmon mode. For the nanowire on the substrate, the plasmon (hybrid) mode possesses not only a long propagation length but also an ultrasmall mode area. From the experimental point of view, this cavity-free structure holds a great potential to study a strong coherent interaction between the plasmon mode and single quantum system (for example, quantum dots) embedded in the substrate.
Spatial light modulators (SLMs) are devices for modulating amplitude, phase or polarization of a light beam on demand. Such devices have been playing an indispensable inuence in many areas from our daily entertainments to scientific researches. In th e past decades, the SLMs have been mainly operated in electrical addressing (EASLM) manner, wherein the writing images are created and loaded via conventional electronic interfaces. However, adoption of pixelated electrodes puts limits on both resolution and efficiency of the EASLMs. Here, we present an optically addressed SLM based on a nonlinear metasurface (MS-OASLM), by which signal light is directly modulated by another writing beam requiring no electrode. The MS-OASLM shows unprecedented compactness and is 400 nm in total thickness benefitting from the outstanding nonlinearity of the metasurface. And their subwavelength feature size enables a high resolution up to 250 line pairs per millimeter, which is more than one order of magnitude better than any currently commercial SLMs. Such MS-OASLMs could provide opportunities to develop the next generation of high resolution displays and all-optical information processing technologies.
We propose a new type of reflective polarizer based on polarization-dependent coupling to surface-plasmon polaritons (SPPs) from free space. This inexpensive polarizer is relatively narrowband but features an extinction ratio of up to 1000 with effic iency of up to 95% for the desired polarization (numbers from a calculation), and thus can be stacked to achieve extinction ratios of 106 or more. As a proof of concept, we experimentally realized a polarizer based on nanoporous aluminum oxide that operates around a wavelength of 10.6 um, corresponding to the output of a CO2 laser, using aluminum anodization, a low-cost electrochemical process.
96 - Dezhuan Han , Xin Li , Fengqin Wu 2005
For an optically thick metallic film, the transmission for both s- and p-polarized waves is extremely low. If the metallic film is coated on both sides with a finite dielectric layer, light transmission for $p$-polarized waves can be enhanced conside rably. This enhancement is not related to surface plasmon-polaritions. Instead, it is due to the interplay between Fabry-Perot interference in the coated dielectric layer and the existence of the Brewster angle at the dielectric/metallic interface. It is shown that the coated metallic films can act as excellent polarizers at infrared wavelengths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا