ﻻ يوجد ملخص باللغة العربية
We present here a machine that is capable of extracting work from a single heat bath. Although no significant temperature gradient is involved in the operation of the machine, yet the Carnot efficiency as high as one is achievable. Working of the machine is explained on the basis of a demon suggested by Maxwell. Utilizing the kinetic energy spectrum of the molecules in solution, the demon can send hotter molecules to a higher gravitational potential at the expense of their own energies. Difference in chemical potentials due to concentration gradients and use of semi-permeable membranes ensure the continuing cyclic process.
We introduce vibrational heat-bath configuration interaction (VHCI) as an accurate and efficient method for calculating vibrational eigenstates of anharmonic systems. Inspired by its origin in electronic structure theory, VHCI is a selected CI approa
We introduce a new selected configuration interaction plus perturbation theory algorithm that is based on a deterministic analog of our recent efficient heat-bath sampling algorithm. This Heat-bath Configuration Interaction (HCI) algorithm makes use
The electronically excited states of methylene (CH$_2$), ethylene (C$_2$H$_4$), butadiene (C$_4$H$_6$), hexatriene (C$_6$H$_8$), and ozone (O$_3$) have long proven challenging due to their complex mixtures of static and dynamic correlations. Semistoc
We extend the recently proposed heat-bath configuration interaction (HCI) method [Holmes, Tubman, Umrigar, J. Chem. Theory Comput. 12, 3674 (2016)], by introducing a semistochastic algorithm for performing multireference Epstein-Nesbet perturbation t
Work extraction from a heat engine in a cycle by a quantum mechanical device (quantum piston) is analyzed. The standard definition of work fails in the quantum domain. The correct extractable work and its efficiency bound are shown to crucially depen