ترغب بنشر مسار تعليمي؟ اضغط هنا

Heat-bath Configuration Interaction: An efficient selected CI algorithm inspired by heat-bath sampling

259   0   0.0 ( 0 )
 نشر من قبل Adam Holmes
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new selected configuration interaction plus perturbation theory algorithm that is based on a deterministic analog of our recent efficient heat-bath sampling algorithm. This Heat-bath Configuration Interaction (HCI) algorithm makes use of two parameters that control the tradeoff between speed and accuracy, one which controls the selection of determinants to add to a variational wavefunction, and one which controls the the selection of determinants used to compute the perturbative correction to the variational energy. We show that HCI provides an accurate treatment of both static and dynamic correlation by computing the potential energy curve of the multireference carbon dimer in the cc-pVDZ basis. We then demonstrate the speed and accuracy of HCI by recovering the full configuration interaction energy of both the carbon dimer in the cc-pVTZ basis and the strongly-correlated chromium dimer in the Ahlrichs VDZ basis, correlating all electrons, to an accuracy of better than 1 mHa, in just a few minutes on a single core. These systems have full variational spaces of 3x10^14 and 2x10^22 determinants respectively.


قيم البحث

اقرأ أيضاً

We extend the recently proposed heat-bath configuration interaction (HCI) method [Holmes, Tubman, Umrigar, J. Chem. Theory Comput. 12, 3674 (2016)], by introducing a semistochastic algorithm for performing multireference Epstein-Nesbet perturbation t heory, in order to completely eliminate the severe memory bottleneck of the original method. The proposed algorithm has several attractive features. First, there is no sign problem that plagues several quantum Monte Carlo methods. Second, instead of using Metropolis-Hastings sampling, we use the Alias method to directly sample determinants from the reference wavefunction, thus avoiding correlations between consecutive samples. Third, in addition to removing the memory bottleneck, semistochastic HCI (SHCI) is faster than the deterministic variant for many systems if a stochastic error of 0.1 mHa is acceptable. Fourth, within the SHCI algorithm one can trade memory for a modest increase in computer time. Fifth, the perturbative calculation is embarrassingly parallel. The SHCI algorithm extends the range of applicability of the original algorithm, allowing us to calculate the correlation energy of very large active spaces. We demonstrate this by performing calculations on several first row dimers including F2 with an active space of (14e, 108o), Mn-Salen cluster with an active space of (28e, 22o), and Cr2 dimer with up to a quadruple-zeta basis set with an active space of (12e, 190o). For these systems we were able to obtain better than 1 mHa accuracy with a wall time of merely 55 seconds, 37 seconds, and 56 minutes on 1, 1, and 4 nodes, respectively.
We introduce vibrational heat-bath configuration interaction (VHCI) as an accurate and efficient method for calculating vibrational eigenstates of anharmonic systems. Inspired by its origin in electronic structure theory, VHCI is a selected CI approa ch that uses a simple criterion to identify important basis states with a pre-sorted list of anharmonic force constants. Screened second-order perturbation theory and simple extrapolation techniques provide significant improvements to variational energy estimates. We benchmark VHCI on four molecules with 12 to 48 degrees of freedom and use anharmonic potential energy surfaces truncated at fourth and sixth order. For all molecules studied, VHCI produces vibrational spectra of tens or hundreds of states with sub-wavenumber accuracy at low computational cost.
The electronically excited states of methylene (CH$_2$), ethylene (C$_2$H$_4$), butadiene (C$_4$H$_6$), hexatriene (C$_6$H$_8$), and ozone (O$_3$) have long proven challenging due to their complex mixtures of static and dynamic correlations. Semistoc hastic heat-bath configuration interaction (SHCI), which efficiently and systematically approaches the full configuration interaction (FCI) limit, is used to provide close approximations to the FCI energies in these systems. This article presents the largest FCI-level calculation to date -- on hexatriene using a polarized double-zeta basis (ANO-L-pVDZ), which gives rise to a Hilbert space containing more than $10^{38}$ determinants. These calculations give vertical excitation energies of 5.58 and 5.59 eV respectively for the $2^1{rm A}_{rm g}$ and $1^1{rm B}_{rm u}$ states, showing that they are nearly degenerate. The same excitation energies in butadiene/ANO-L-pVDZ were found to be 6.58 and 6.45 eV. In addition to these benchmarks, our calculations strongly support the presence of a previously hypothesized ring-minimum species of ozone that lies 1.3 eV higher than the open-ring minimum energy structure and is separated from it by a barrier of 1.11 eV.
We introduce an algorithm for sampling many-body quantum states in Fock space. The algorithm efficiently samples states with probability approximately proportional to an arbitrary function of the second-quantized Hamiltonian matrix element connecting the sampled state to the current state. We apply the new sampling algorithm to the recently-developed Semistochastic Full Configuration Interaction Quantum Monte Carlo method (S-FCIQMC), a semistochastic implementation of the power method for projecting out the ground state energy in a basis of Slater determinants. The heat-bath sampling requires modest additional computational time and memory compared to uniform sampling but results in newly-spawned weights that are approximately of the same magnitude, thereby greatly improving the efficiency of projection. A comparison in efficiency between uniform and approximate heat-bath sampling is performed on the all-electron nitrogen dimer at equilibrium in Dunnings cc-pVXZ basis sets with X in {D, T, Q, 5}, demonstrating a large gain in efficiency that increases with basis set size. In addition, a comparison in efficiency is performed on three all-electron first-row dimers, B_2, N_2, and F_2, in a cc-pVQZ basis, demonstrating that the gain in efficiency compared to uniform sampling also increases dramatically with the number of electrons.
The recently developed semistochastic heat-bath configuration interaction (SHCI) method is a systematically improvable selected configuration interaction plus perturbation theory method capable of giving essentially exact energies for larger systems than is possible with other such methods. We compute SHCI atomization energies for 55 molecules which have been used as a test set in prior studies because their atomization energies are known from experiment. Basis sets from cc-pVDZ to cc-pV5Z are used, totaling up to 500 orbitals and a Hilbert space of $10^{32}$ Slater determinants for the largest molecules. For each basis, an extrapolated energy well within chemical accuracy (1 kcal/mol or 1.6 mHa/mol) of the exact energy for that basis is computed using only a tiny fraction of the entire Hilbert space. We also use our almost exact energies to benchmark coupled-cluster [CCSD(T)] energies. The energies are extrapolated to the complete basis set limit and compared to the experimental atomization energies. The extrapolations are done both without and with a basis-set correction based on density-functional theory. The mean absolute deviations from experiment for these extrapolations are 0.46 kcal/mol and 0.51 kcal/mol, respectively. Orbital optimization methods used to obtain improved convergence of the SHCI energies are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا